• 제목/요약/키워드: fixed point problem

검색결과 353건 처리시간 0.023초

Accelerated Tseng's Technique to Solve Cayley Inclusion Problem in Hilbert Spaces

  • Shamshad, Husain;Uqba, Rafat
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.673-687
    • /
    • 2022
  • In this study, we solve the Cayley inclusion problem and the fixed point problem in real Hilbert space using Tseng's technique with inertial extrapolation in order to obtain more efficient results. We provide a strong convergence theorem to approximate a common solution to the Cayley inclusion problem and the fixed point problem under some appropriate assumptions. Finally, we present a numerical example that satisfies the problem and shows the computational performance of our suggested technique.

COMMON SOLUTION TO GENERALIZED MIXED EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEM FOR A NONEXPANSIVE SEMIGROUP IN HILBERT SPACE

  • DJAFARI-ROUHANI, BEHZAD;FARID, MOHAMMAD;KAZMI, KALEEM RAZA
    • 대한수학회지
    • /
    • 제53권1호
    • /
    • pp.89-114
    • /
    • 2016
  • In this paper, we introduce and study an explicit hybrid relaxed extragradient iterative method to approximate a common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converges strongly to the common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, improvement and generalization of the previously known results in this area.

NONLINEAR ALGORITHMS FOR A COMMON SOLUTION OF A SYSTEM OF VARIATIONAL INEQUALITIES, A SPLIT EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEMS

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.495-524
    • /
    • 2016
  • In this paper, we propose an iterative algorithm for finding a common solution of a system of generalized equilibrium problems, a split equilibrium problem and a hierarchical fixed point problem over the common fixed points set of a finite family of nonexpansive mappings in Hilbert spaces. Furthermore, we prove that the proposed iterative method has strong convergence under some mild conditions imposed on algorithm parameters. The results presented in this paper improve and extend the corresponding results reported by some authors recently.

FIXED POINTS AND HOMOTOPY RESULTS FOR ĆIRIĆ-TYPE MULTIVALUED OPERATORS ON A SET WITH TWO METRICS

  • Lazar, Tania;O'Regan, Donal;Petrusel, Adrian
    • 대한수학회보
    • /
    • 제45권1호
    • /
    • pp.67-73
    • /
    • 2008
  • The purpose of this paper is to present some fixed point results for nonself multivalued operators on a set with two metrics. In addition, a homotopy result for multivalued operators on a set with two metrics is given. The data dependence and the well-posedness of the fixed point problem are also discussed.

A NEW ALGORITHM FOR SOLVING MIXED EQUILIBRIUM PROBLEM AND FINDING COMMON FIXED POINTS OF BREGMAN STRONGLY NONEXPANSIVE MAPPINGS

  • Biranvand, Nader;Darvish, Vahid
    • Korean Journal of Mathematics
    • /
    • 제26권4호
    • /
    • pp.777-798
    • /
    • 2018
  • In this paper, we study a new iterative method for solving mixed equilibrium problem and a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. Moreover, we prove a strong convergence theorem for finding common fixed points which also are solutions of a mixed equilibrium problem.

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

FIXED POINTS OF WEAKLY INWARD 1-SET-CONTRACTION MAPPINGS

  • Duan, Huagui;Xu, Shaoyuan;Li, Guozhen
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1725-1740
    • /
    • 2008
  • In this paper, we introduce a fixed point index of weakly inward 1-set-contraction mappings. With the aid of the new index, we obtain some new fixed point theorems, nonzero fixed point theorems and multiple positive fixed points for this class of mappings. As an application of nonzero fixed point theorems, we discuss an eigenvalue problem.

INERTIAL EXTRAPOLATION METHOD FOR SOLVING SYSTEMS OF MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS USING BREGMAN DISTANCE APPROACH

  • Hammed A. Abass;Ojen K. Narain;Olayinka M. Onifade
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.497-520
    • /
    • 2023
  • Numerous problems in science and engineering defined by nonlinear functional equations can be solved by reducing them to an equivalent fixed point problem. Fixed point theory provides essential tools for solving problems arising in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization problems, equilibrium problems, complementarity problems, selection and matching problems, and problems of proving the existence of solution of integral and differential equations.The theory of fixed is known to find its applications in many fields of science and technology. For instance, the whole world has been profoundly impacted by the novel Coronavirus since 2019 and it is imperative to depict the spread of the coronavirus. Panda et al. [24] applied fractional derivatives to improve the 2019-nCoV/SARS-CoV-2 models, and by means of fixed point theory, existence and uniqueness of solutions of the models were proved. For more information on applications of fixed point theory to real life problems, authors should (see [6, 13, 24] and the references contained in).

POSITIVE SOLUTIONS OF SUPERLINEAR AND SUBLINEAR BOUNDARY VALUE PROBLEMS

  • Gatica, Juan A.;Kim, Yun-Ho
    • Korean Journal of Mathematics
    • /
    • 제25권1호
    • /
    • pp.37-43
    • /
    • 2017
  • We study the existence of positive solutions of second order nonlinear separated boundary value problems of superlinear as well as sublinear type without imposing monotonicity restrictions on the problem. The type of problem investigated cannot be analyzed using the linearization about the trivial solution because either it does not exist (the sublinear case) or is trivial (the superlinear case). The results follow from a known fixed point theorem by noticing that the concavity of the solutions provides an important condition for the applicability of the fixed point result.