• Title/Summary/Keyword: fixed design

Search Result 2,729, Processing Time 0.028 seconds

Simplified Formula for Design of Fixed Earth Supported Sheet-Pile Wall in Sand (사질토 지반 앵커식 고정지지 널말뚝 설계용 간편식)

  • Yang, Woo-Shik;Kim, Khi-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.89-94
    • /
    • 1998
  • Stock(1992) had developed the graph for solving the penetration depth, tieforce of anchor and maximum bending moment of sheet-pile wall for cantilever and free earth supported anchored wall. Kim(1995) had developed graph for design of fixed earth supported anchored wall. In this paper, the simplified formulas for calculating the penetration depth, tieforce of anchor and maximum bending moment of sheet-pile wall was developed for fixed earth supported anchored wall in sand. The developed formulas may be helpful for design or sheet pile wall.

  • PDF

Virtual Design Considerations for Fixed Dental Prosthesis Including Axial Contour and Proximal Contact to Maintain Periodontal Health and Physiologic Function: A Narrative Review

  • Jun-Ho Cho;Se-Hyoun Kim;Jae-Bok Lee;Hyung-In Yoon
    • Journal of Korean Dental Science
    • /
    • v.16 no.2
    • /
    • pp.105-114
    • /
    • 2023
  • The axial contour and proximal contact of the prosthesis affect periodontal health, food impaction, and patient satisfaction. This narrative review provides a summary of articles regarding the axial contour and proximal contact of a fixed dental prosthesis on periodontal health and physiologic function. By acquiring a comprehensive understanding of the axial contour and proximal contact of teeth and prostheses, as well as their functional significance, the virtual design of fixed dental prosthesis can be optimized to maintain periodontal health and promote physiologic function effectively.

Seismic Isolation Design for Bridges on Lead-Rubber Bearings (납-면진받침을 이용한 교량의 면진설계)

  • 이철희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.161-168
    • /
    • 1999
  • The concept of seismic design was induced in our country which was poor in it for the scarcity of recognition and insufficiency of funds. Recently many specialists are enforcing the provisions of seismic design. But because seismic force of seismic design is very great and all the seismic force are concentrated on the fixed bearings and substructure the bearings are the seismic force are concentrated on the fixed bearings and substructure the bearings are destroyed so that seismic design lose its basic concept. In addition when the earthquake which exceeds seismic design force takes place the bridge is collapsed. For these reasons the developed seismic isolation design concept was appeared which diminishes seismic force itself by period shift and additional damping distributes it to each superstructures evenly. Therefore this study introduced the method which combines PC-LEADeR(design program for L.R.B) with SAP 2000(linear elastic analysis) and performs the seismic isolation design more elaborately and simply verified the propriety of that method and examined the force control of L. R. B.

  • PDF

Analysis of Partial Denture through Topology Optimization Design (위상최적설계를 통한 가공의치의 해석)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.351-358
    • /
    • 2006
  • Recently, the development of new structural model in fixed partial denture system is required to be started from the conceptual design with low cost, high performance and quality. In this point, a FEM based design of partial denture is used to investigate stress distribution on the durable shape. In this paper, the structural performances of partial dentures were analyzed under three biting forces. The periodontal embedding model is introduced on behalf of the detailed supporting tissue, which is composed of dentin, cortical bone, cancellous bone and periodontal ligament. Using topology optimization, the optimal reinforcement layout of connector was obtained and the detail shape in the fixed partial denture was designed.

Area-Efficient Squarer and Fixed-Width Squarer Design (저면적 제곱기 및 고정길이 제곱기의 설계)

  • Cho, Kyung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • The partial product matrix (PPM) of a parallel squarer is symmetric. To reduce the depth of PPM, it can be folded, shifted and rearranged. In this paper, we present an area-efficient squarer design method using new partial product rearrangement. Also, a fixed-width squarer design method of the proposed squarer is presented. By simulations, it is shown that the proposed squarers lead to up to 17% reduction in area, 10% reduction in propagation delay and 10% reduction in power consumption compared with previous squarers. By using the proposed fixed-width squarers, the area, propagation delay and power consumption can be further reduced up to 30%, 16% and 28%, respectively.

An Analytical Study on the Behavior of Steel Frames with Semi-Rigidity of Beam-to-Column Connections (반강접 접합부를 갖는 강골조의 거동에 대한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.551-559
    • /
    • 2003
  • In steel frames, the analysis and design techniques are based on either idealized fixed or pinned connections. In this case, it has the advantage that the structural analysis and the design procedure were simplified, but there could be given different results of analysis between the real steel frame connections and the idealized fixed and pinned connection. This is because the real connections would be analyzed by semi-rigid, and have some transfer of moment and rotational constraint about the loads. In this study, structural analysis program with considered connections that have joint rigidity of fixed, pinned and semi-rigid, was developed. Then, the effects of joint rigidity on strength and displacement. in steel frames subjected to lateral forces and axial forces, were investigate, and the results were compared with those of the Midas Gen. w program.

THE OPTIMAL DESIGN OF CONNECTORS IN ALL CERAMIC FIXED PARTIAL DENTURES MANUFACTURED FROM ALUMINA TAPE (최적설계기법을 이용한 완전도재 가공의치의 연결부 형태 보강)

  • Oh Nam-Sik;Kim Han-Sung;Lee Myung-Hyun;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • Statements of problem: All ceramic fixed partial denture cores can be made by the slip casting method and the advanced alumina tape method. The fracture resistance of these core connector areas is relatively low. Purpose: The purpose of this study is to standardize the appropriate volumetric figure and location of the connectors in the alumina core fabricated in alumina tape to be used in fixed partial dentures by way of topology optimization. Material and method: A maxillary anterior three-unit bridge alumina core with teeth form and surrounding periodontal apparatus model was used to ultimately design the most structurally rigid form of the connector. Loadings from a $0^{\circ}$, $45^{\circ}$ and $60^{\circ}$ to the axis of each tooth were applied and analyzed with the 3-D finite element analysis method. Using the results from these experiments, the topology optimization was applied and the optimal reinforcement layout of connector was obtained and the detail shape in the fixed partial denture core was designed. Results: The modified prosthesis with the form of a bulk in the lower lingual surface of the connector in the event, reduced the stress concentration up to 20% in the 3-D FEA. Conclusion: The formation of a bulk in the lower lingual connector area of an alumina core for a fixed partial denture decreases the stress to a clinically favorable measure but does not harm the esthetic point of view. This result illustrates the possibility of clinical application of the modified form designed by the topology optimization method.

Variance Components of Nested Designs (지분계획의 분산성분)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1093-1101
    • /
    • 2015
  • This paper discusses nested design models when nesting occurs in treatment structure and design structure. Some are fixed and others are random; subsequently, the fixed factors having a nested design structure are assumed to be nested in the random factors. The treatment structure can involve random and fixed effects as well as a design structure that can involve several sizes of experimental units. This shows how to use projections for sums of squares by fitting the model in a stepwise procedure. Expectations of sums of squares are obtained via synthesis. Variance components of the nested design model are estimated by the method of moments.

Design of Fixed-point Pulse Shaping FIR fitters Using Mixed Integer Linear Programming (혼합 선형계획법을 이용한 고정소수점 파형 성형 FIR필터의 설계)

  • 오우진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.105-113
    • /
    • 2000
  • This paper proposes the optimal design method of PSF(pulse shaping filter) with fixed-point coefficients, often used in digital communication system. Though RCF (Raised Cosine Filter) and Root-Squared RCF have less attenuation in stopband and are designed with floating point coefficients, those are selected by the reason that the design is simple. In this paper, 1 introduce the optimal design method for fixed point PSF including Root Squared type by using mixed integer linear programming. Through some design examples, it is shown that the proposed method better performs in ISI and requires less complexity. The complexity of the proposed filter is reduced to 20% as compared to conventional RCF and Root Squared RCF. For IS-95, that is the standard of CDMA system, the proposed filter reduces ISI up to 75% compared to the standard transmission filter.

  • PDF

Study on the Effect of Earthquake Loads for Fixed Offshore Wind Turbines According to Soil Type (지반 종류에 따른 고정식 해상 풍력발전기 지진 하중 영향 연구 )

  • Yongoon Oh;Jeonggi Kim;Miseon Kim;Jonghun Jung;Johyug Bang
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.14-20
    • /
    • 2023
  • In this study, using the commercial software Bladed developed by DNV for integrated load calculation of wind turbines, the generation of seismic waves according to soil type based on Korea's domestic regulations, and load calculation considering earthquake conditions were performed according to the IEC standard, and load in the main coordinate system of the fixed offshore wind turbine was calculated. By comparing the calculated load with the design load of the fixed offshore wind turbine, the effect of earthquake loads according to soil type on the main components of fixed offshore wind turbines was evaluated. As a result of the evaluation, when an earthquake load on a wind turbine is considered, the effect of the earthquake load is related to the natural frequency of the major components and the magnitude of the adjacent acceleration in the earthquake response spectrum, and the earthquake load differs according to soil type and may exceed the design load.