• Title/Summary/Keyword: fishing mortality

Search Result 69, Processing Time 0.053 seconds

Study on a Three-Dimensional Ecosystem Modeling Framework Based on Marine Food Web in the Korean Peninsula (한반도 연근해를 대상으로 해양 먹이망 기반 3차원 생태모델 구축 연구)

  • Cho, Chang-Woo;Song, Yong-Sik;Kim, Changsin;Youn, Seok-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.194-207
    • /
    • 2021
  • It is necessary to assess and manage the different elements of the marine ecosystem, such as climate change, habitat, primary and secondary production, energy flow, food web, potential yield, and fishing, to maintain the health of the ecosystem as well as support sustainable development of fishery. We set up an ecosystem model around the Korean peninsula to produce scientific predictions necessary for the assessment and management of marine ecosystems and presented the usability of the model with scenario experiments. We used the Atlantis ecosystem model based on the marine food web; Atlantis is a three-dimensional end-to-end model that includes the information and processes within an entire system, from an abiotic environment to human activity. We input the ecological and biological parameters, such as growth, mortality, spawning, recruitment, and migration, to the Atlantis model via functional groups using existing research and local measurements. During the simulation period (2018-2019), we confirmed that the model reproduced the observed data reasonably and reflected the actual ecosystem characteristics appropriately. We thus identified the usability of a marine ecosystem model with experiments on different environmental change scenarios.

Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science (근해 유자망에 의해 어획되는 참조기자원의 관리를 위한 가입당 산란자원량 모델의 비교분석)

  • LEE, Eun Ji;SEO, Young Il;PARK, Hee Won;KANG, Hee Joong;ZHANG, Chang Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.535-544
    • /
    • 2015
  • Yield per recruit model is the most popular method for fisheries stock assessment. However, stock assessment using yield per recruit model can lead to recruitment overfishing as this model only considers the maximum yield per recruit without spawning biomass for reproduction. For this reason, spawning biomass per recruit model which reveals variations of spawning stock biomass per fishing mortality (F) and age at first capture ($t_c$) is considered as more proper method for stock assessment. There are mainly two methods for spawning biomass per recruit model known as age specific selectivity method and knife-edged selectivity method. In the knife-edged selectivity method, the spawning biomass per recruit has been often calculated using biomass per recruit value by multiplying the maturity ratio of the recruited age. But the maturity ratio in the previous method was not considered properly in previous studies. Therefore, a new method of the knife-edged selectivity model was suggested in this study using a weighted average of the maturity ratio for ages from the first capture to the lifespan. The optimum fishing mortality in terms of $F_{35%}$ which was obtained from the new method was compared to the old method for small yellow croaker stock in Korea. The value of $F_{35%}$ using the new knife-edged selectivity model was 0.302/year and the value using the old model was 0.349/year. However, the value of $F_{35%}$ using the age specific selectivity model was estimated as 0.320/year which was closer to the value from the new knife-edged selectivity model.

Stock Assessment and Management Implications of Small Yellow Croker in Korean Waters (한국 근해 참조기의 자원평가 및 관리방안)

  • ZHANG Chang Ik;KIM Suam;YOON Seong-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.282-290
    • /
    • 1992
  • Based on surplus production models using fishery data for the last 20 years, a stock assessment was conducted for the small yellow croaker in Korean waters. The maximum sustainable yields (MSY) from the Schaefer and Fox models were estimated to be 37,000 metric tons (mt) and 33,450 mt. Zhang's model using time-series biomass with instantaneous coefficients of fishing mortality (F) and using time-series biomass and catch yielded MSY estimates of 45,328 mt and 40,160 mt, respectively. A yield-per-recruit analysis showed that the current yield per recruit of about 20g with F= 1.11 $yr^{-l}$, where the age at first capture $(t_c)$ is 0.604, was much lower than the maximum possible yield per recruit of 43g. Fixing $t_c$ at the current level and reducing fishing intensity (F) from 1.11 $yr^{-l}$ to 0.4 $yr^{-l}$ yielded only a small increase in predicted yield per recruit, from 20 to 25g. However, estimated yield per recruit increased to 43g by increasing $(t_c)$ from the current age (0.604) to age three with F fixed at the current level. This age at first capture corresponded to the optimal length which was obtained from the $F_{0.1}$ method. According to the analysis of stock recovery strategies employing the Zhang model, the optimum equilibrium biomass $(B^*_{MSY})$ which produces the maximum yield could be achieved after approximately five years at the lower fishing intensity (F=0.5).

  • PDF

Estimation on Population Ecological Characteristics of Crucian Carp, Carassius auratus in the Mid-Upper System of the Seomjin River (섬진강 중.상류 수계에서 붕어 개체군의 생태학적 특성치 추정)

  • Jang, Sung-Hyun;Ryu, Hui-Seong;Lee, Jung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.318-326
    • /
    • 2011
  • The population ecological characteristics of the Crucian carp, Carassius auratus, were determined in order to estimate stock of the mid-upper system of the Seomjin River. The fish ranged in size from 95 to 288mm total length. The age was determined by counting the scale annulus. The scales displayed clear annulus that were used to estimate the age. The oldest fish observed in this study was 5 years old. Age-2 fishes were the most numerous in the sample(n=38), followed in frequency be age-3(n=22). Marginal index analysis validated the formation of a single annulus per year. The relationship between body length and body weight was BW = $0.0038BL^{3.73}$($R^2$=0.96) (p<0.01). The relationship between the scale radius and body length was BL = 2.362R+2.76($R^2$=0.89). The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}$=33.2 cm, $W_{\infty}$=1,798.4 g, $K=0.20year^{-1}$ and $t_0$=-0.51year. Therefore, Growth in length of the fish was expressed by the von Bertalanffy's growth equation as $L_t=33.23$($1-e^{-0.20(t+0.51)}$)($R^2$=0.98). The annual survival rate was estimated to be 0.427year$^{-1}$. The instantaneous coefficient of natural mortality of estimated from the Zhang and Megrey method was $0.784year^{-1}$, and instantaneous coefficient of fishing mortality was calculated $0.067year^{-1}$. From the estimates of survival rate, the instantaneous coefficient of total mortality was estimated to be $0.851year^{-1}$.

Effect of Environment Factors on Growth and Mortality of Cupped Oyster, Crassostrea gigas (양식장 환경이 갯벌양식 굴 (Crassostrea gigas)의 성장과 폐사에 미치는 영향)

  • Park, Sang-Woo;Kim, Yong;Kim, Ji-Hye;Chung, Su-Whan;Han, Kyung-Nam
    • The Korean Journal of Malacology
    • /
    • v.29 no.4
    • /
    • pp.273-281
    • /
    • 2013
  • In order to evaluate how the effects of aquacultural environment, such as temperature, salinity, DO, SS, Chlorophyll-a, COD and nutritive salts on Cupped oysters, an investigational study was conducted between September to December of 2011. During the study, different intermediate cage farms on the surface of the sea were used to culture and compare the growth and survival rate of the Cupped oysters in different fishing environments. The different intermediate cage farms used were Wonsando-ri, Chang-ri, and Pado-ri. In January of 2012, these oysters were transplanted to a horizontal net farm in a mudflat until July of that year. The adaptation rates of the Cupped oysters were tested at differential exposure times at varying intertidal periods. Wonsando-ri showed the highest water temperature and Chlorophyll-a levels, while the salinity was found to be within range of stable conditions among all three intermediate cage farms. Once the Cupped oysters were at the horizontal net farm, the growth was measured at distinct tidal exposure time of 1, 3, and 5 hours, whereby the growth rate was highest at 3, 1, and 5 hours, respectively. In addition, the oysters cultivated in intermediate cage farms had longer shell lengths compared to shell heights, while oysters cultured in the horizontal net farm had larger shell heights than shell lengths.

A Study on Fluctuations in Biomass of Small Yellow Croaker, Pseudosciaena polyactis, off Korea (한국근해 참조기의 자원량 변동에 관한 연구)

  • ZHANG Chang-Ik;KIM Yong-Mun;YOO Sin-Jae;KIM Chong-Kwan;AHN Soon-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.37-44
    • /
    • 1992
  • Annual biomasses of small yellow croaker, Pseudosciaena polyactis, were estimated by biomass-based cohort analysis (Zhang, 1987) , using data on annual catch in weight at age for 1970-88 in Korean waters. Annual biomass of croaker was highest in 1974 with about 100,000 mt, declining to a level of 20,000-30,000 mt after 1981. Adult biomass also showed a peak in 1974 with about 50,000 mt. Afterwards, however, it continuously dropped. According to the estimates of biomass at age obtained from this analysis, the age composition of small yellow croaker in the 1980's differed greatly from that in the 1970's. The proportions of older croakers (>5 years) were very low in the 1980's and even the biomasses of young croakers (1-4 years) were at a very low level in the 1980's. Year classes of 1968, 1972 and 1978 appeared to be relatively dominant. The mean value of instantaneous fishing mortality (F) in the 1980's was twice that of the 1970's. Recruitment of croaker exhibited an unusally linear relationship with adult stock biomass.

  • PDF

Viability test and bulk harvest of natural zooplankton communities to verify the efficacy of a ship's ballast water treatment system based on USCG phase-II (USCG phase-II 선박평형수 처리장치 성능 평가를 위한 자연 해수의 동물플랑크톤 대량 확보 및 생사판별)

  • Jang, Min-Chul;Baek, Seung Ho;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.9-15
    • /
    • 2016
  • We investigated >$50-{\mu}m$ marine planktonic organisms (mainly zooplankton) using a bongo net in Masan Bay and Jangmok Bay in order to harvest 75% of natural communities based on Phase-II approval regulations by the United States Coast Guard (USCG). The concentrated volume (in 1 ton) and abundance of zooplankton were $1.8{\times}10^7ind.ton^{-1}$ and $2.3{\times}10^7ind.ton^{-1}$, and their survival rates were 82.6% and 80.1%, respectively. The community structure in Jangmok Bay was similar to that in Masan Bay, and dominant species were adult and immature groups (stage IV) of genus Acartia. Harvested populations were inoculated in a 500-ton test tank. Although the population abundances were $6.0{\times}10^4ind.ton^{-1}$ for both bay samples, the mortality rates were higher in the Masan Bay population (32%) than the Jangmok Bay population (20%). We considered the reason to be that there were 30% more immature individuals of Acartia from Masan Bay than from Jangmok Bay. The younger population may have been greatly stressed by the moving process and netting gear. After applying a Ballast Water Treatment System (BWTS) using a sample form Jangmok Bay, the mortality rates in the treatment groups were found to be 100% after 0 days and 5 days, implying that the BWTS worked well. During the winter season, the zooplankton concentration method alone did not easily satisfy the approval standards of USCG Phase II (> $10{\times}10^4ind.ton^{-1}$ in the 500 ton tank). Increasing the netting frequency and additional fishing boats may be helpful in meeting the USCG Phase II biological criteria.

Fisheries Management of an Abalone Haliotis diversicolor in the Eastern Coastal Waters of Jeju Island using Yield-per-recruit Model (가입당생산량(yield-per-recruit) 모델을 이용한 제주 동부연안 오분자기류(Haliotis diversicolor)의 어업관리)

  • Ko, Joon-Chul;Yoo, Joon-Taek;Choi, Young-Min;Kim, Jae-Woo;Im, Yang-Jae
    • The Korean Journal of Malacology
    • /
    • v.24 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • We studied the management policy for Haliotis diversicolor fisheries in the coastal area of Sungsanpo using Yield-per-recruit model from 2004 to 2006. The age at first capture($t_c$) and fishing mortality(F) annually estimated during the study period decreased and increased, respectively. The maximum yield-per-recruit in 2004 was increased by increasing $t_c$ from the 2.012 year of current $t_c$ to 2.7 year or increasing F from the 0.574/year of current F to 0.800/year, and that in 2005 was increased by increasing $t_c$ from the 1.946 year of current $t_c$ to 2.5 year or increasing F from the 0.578/year of current F to 0.880/year. In 2006, the maximum yield-per-recruit was increased by increasing $t_c$ from the 1.926year of current $t_c$ to 3.1 year or decreasing F from the 1.088/year of current F to 0.810/year. Further, although the current F in 2004 and 2005 was lower than the estimated $F_{MAX}$, that in 2006 was higher than the estimated $F_{MAX}$. These results indicate that the likelihood of growth overfishing with increasing catch of smaller H. diversicolor in 2006 was greater than in 2004 and 2005. As action that could prevent growth overfishing in fisheries management of H. diversicolor, increasing for the current $t_c$ could be a more appropriate policy because the artificial decrease of the number of woman divers related F is actually difficult.

  • PDF

Gene analysis of galectin-1, innate immune response gene, in olive flounder Paralichthys olivaceus at different developmental stage (넙치, Paralichthys olivaceus 발생단계별 galectin-1 유전자의 발현 분석)

  • Jang, Min Seok;Lee, Young Mee;Yang, Hyun;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.255-263
    • /
    • 2013
  • The innate immune response is fundamental defense response of vertebrates and invertebrates. Especially, the innate immune response important for larvae that lack of resistance to infectious diseases in the early stages. Galectin is one of the kinds of lectin and presents in the fish mucous that involves innate immune response. Galectin have been studied from various fishing species, but expression analysis of galectin is still unclear during early developmental stage in olive flounder. In this study, we investigated gene expression of galectin-1 from various developmental stage and tissues. We excised several tissues including the muscle, fin, eye, gill, brain, stomach, intestine, kidney, spleen and liver from adult olive flounder and confirmed gene expression of galectin-1 using RT-PCR and quantitative real-time PCR. Expression of galectin-1 was significantly higher in muscle, stomach and intestinal tissue than other tissue in adult fish (5 and 29 months). Also, galectin-1 gene was detected from 0 DAH and gradually increased to 35 DAH and since then decreased after stomach development period. Induction of galectin-1 during the early developmental stage suggest that muscle, fin and eye tissue is formed and begins the secretion of galectin this period. In addition, increased expression levels at 35 DAH suggest that due to complete formation of stomach and intestine, increase of secretion and activation of enzyme. This study shows that expression of galectin-1 during early developmental stages and adult period in olive flounder and can be expect that galectin-1 play essental role in the innate immune system throughout the whole life time. Galectin-1 is primary barrier such as skin and digestive tissue against pathogen infection, also digestive tract developmental period is important for pathogen invasion can be expected that it will serve. Mass mortality due to the disease in seed production is continuing damage, therefore these result will be meaningful about infectious disease during early developmental stages as a basic data for the study.