DOI QR코드

DOI QR Code

Coastal Water Fisheries Resources Research Division, National Institute of Fisheries Science

근해 유자망에 의해 어획되는 참조기자원의 관리를 위한 가입당 산란자원량 모델의 비교분석

  • LEE, Eun Ji (Fisheries Resources Management Division, National Fisheries Research & Development Institute) ;
  • SEO, Young Il (Fisheries Resources Management Division, National Fisheries Research & Development Institute) ;
  • PARK, Hee Won (Fisheries Resources Management Division, National Fisheries Research & Development Institute) ;
  • KANG, Hee Joong (Divison of Marine Production System Management, Pukyong National University) ;
  • ZHANG, Chang Ik (Divison of Marine Production System Management, Pukyong National University)
  • 이은지 (국립수산과학원 연근해 자원과) ;
  • 서영일 (국립수산과학원 연근해 자원과) ;
  • 박희원 (국립수산과학원 연근해 자원과) ;
  • 강희중 (부경대학교 해양생산시스템관리학부) ;
  • 장창익 (부경대학교 해양생산시스템관리학부)
  • Received : 2015.09.17
  • Accepted : 2015.11.26
  • Published : 2015.11.30

Abstract

Yield per recruit model is the most popular method for fisheries stock assessment. However, stock assessment using yield per recruit model can lead to recruitment overfishing as this model only considers the maximum yield per recruit without spawning biomass for reproduction. For this reason, spawning biomass per recruit model which reveals variations of spawning stock biomass per fishing mortality (F) and age at first capture ($t_c$) is considered as more proper method for stock assessment. There are mainly two methods for spawning biomass per recruit model known as age specific selectivity method and knife-edged selectivity method. In the knife-edged selectivity method, the spawning biomass per recruit has been often calculated using biomass per recruit value by multiplying the maturity ratio of the recruited age. But the maturity ratio in the previous method was not considered properly in previous studies. Therefore, a new method of the knife-edged selectivity model was suggested in this study using a weighted average of the maturity ratio for ages from the first capture to the lifespan. The optimum fishing mortality in terms of $F_{35%}$ which was obtained from the new method was compared to the old method for small yellow croaker stock in Korea. The value of $F_{35%}$ using the new knife-edged selectivity model was 0.302/year and the value using the old model was 0.349/year. However, the value of $F_{35%}$ using the age specific selectivity model was estimated as 0.320/year which was closer to the value from the new knife-edged selectivity model.

본 연구에서는 가입에 따른 산란자원량의 변화를 나타내어 가입남획을 방지하는 가입당 산란자원량 모델(spawning biomass per recruit model)을 비교 분석하였다. 가입당 산란자원량 모델은 연령별 선택비를 고려하지 않는 (knife-edged selectivity) 방법과 연령별 선택비를 고려한 (age specific selectivity) 방법의 두 가지가 있으며 연령별 선택비를 고려하지 않는 방법의 경우 가입당 자원량의 식에 성숙비를 곱함으로써 가입당 산란자원량을 나타낼 수 있다. 하지만 기존의 가입당 산란자원량 추정 방법은 어구가입 이후의 모든 연령을 고려하지 않고 어구가입 연령의 성숙비만을 가입당 자원량에 곱함으로써 가입당 산란자원량을 계산하였다. 본 연구에서는 이를 수정하여 어구가입 이후의 모든 연령을 고려한, 즉, 연령별 자원량에 대해 가중평균된 성숙비를 가입당 자원량에 곱하여 가입당 산란자원량을 추정하였다. 한국 근해에서 유자망에 의해 어획되는 참조기자원을 대상으로 기존의 방법과 새로운 방법을 적용하여 추정된 가입당 산란자원량을 비교한 결과 어구가입연령의 성숙비가 1.00 이상에서는 가입당 산란자원량이 차이가 없었다. 그러나 성숙비가 1.00 미만인 연령에서는 어구가입연령이 낮을수록 오차가 크게 나타났으며 기존 방법에 의해 가입당 산란자원량이 과소 추정되었고 어구가입연령별로 가입당 산란자원량의 오차 값을 비교하였을 때, 적게는 4세 때의 0.25 g에서 많게는 1세 때의 130.69 g만큼의 오차가 나타났다. 또한 연령별 선택비를 고려하지 않는 방법과 연령별 선택비를 고려한 방법을 통해 $F_{35%}$를 비교한 결과 연령별 선택비를 고려하지 않는 방법 중 기존 방법에 의한 $F_{35%}$가 0.349/year로 나타났으며 새로운 방법에 의한 $F_{35%}$가 0.302/year로써 새로운 방법에 의한 값이 연령별 선택비를 고려한 방법에 의한 $F_{35%}$인 0.320/year와 유사하게 추정되었다. 따라서 본 연구에서 제시된 새로운 가입당 산란자원량 방법은 대부분의 어구가입연령이 2세 미만으로 낮게 나타나는 한국 연근해 어종을 대상으로 가입당 산란자원량 모델을 통해 자원평가를 실시할 경우 가입당 산란자원량과 그에 따른 적정어획수준의 오차 값을 줄여줄 것이며 기존의 방법을 통한 $F_{35%}$의 값은 과대 추정되어 남획의 위험이 있으므로 새로운 방법을 통해 적정어획수준을 추정하는 것이 옳다고 판단된다.

Keywords

References

  1. Beverton RJH and Holt SJ. 1957. On the Dynamics of Exploited Fish Populations, Fishery Investigations, Series II, Marine Fisheries. Great Britain, Great Britain Ministry of agriculture, Fisheries and Food 19, 533pp.
  2. Cho SM and Jeong WG. 2007. Ecological study of shortnecked clam Ruditapes philippinarum from the Jindu coast of Hansan Island, Korea. Kor J Malacol 23(1), 25-30.
  3. Choi YM, Zhang CI, Lee JB, Kim JY and Cha HK. 2004. Stock assessment and management implications of chub mackerel, Scomber japonicus in Korean Waters. J Kor Soc Fish Res 6(2), 90-100.
  4. Jang SH, Ryu HS and Lee JH. 2011. Stock assessment and management implications of the Korean aucha perch (Coreopercaherzi) in freshwater. Kor J Limnol 44(2), 172-177.
  5. Ko JC, Yoo JT, Choi YM, Kim JW and Im YJ. 2008. Fisheries management of an abalone haliotis diversicolor in the Eastern Coastal Waters of Jeju Island using yield-per-recruit model. Kor J Malacol 24(2), 143-151
  6. Kvamme C and Bogstad B. 2007. The effect of including length structure in yield-per-recruit estimates for Northeast Arctic cod. ICES J Mar Sci 64, 357-368. https://doi.org/10.1093/icesjms/fsl027
  7. Kwon DH. 2010. Population dynamics and stock assessment of Macrophthalmus japonicas De Haan in the Yellow Sea of Korea. Ph.D. Thesis. Pukyong National University, Korea, p. 118.
  8. Kwon YJ, Zhang CI, Pyo HD and Seo YI. 2013. Comparison of models for estimating surplus productions and methods for estimating their parameters. J. Kor. Soc. Fish. Tech. 49(1), 018-028. https://doi.org/10.3796/KSFT.2013.49.1.018
  9. Lee JB, Lee DW, Choi IS and Zhang CI. 2012. Forecasting biomass and recruits by age-structured spawner-recruit model incorporating environmental variables. J Kor Soc Fish Tech 48(4), 445-451 https://doi.org/10.3796/KSFT.2012.48.4.445
  10. Lee JH, Seo YI, Oh TY and Lee DW. 2013. Estimations on population ecological characteristics of small yellow croaker, Larimichthys polyactis by the drift gillnet fishery in Korean Waters. J Kor Soc Fish Tech 49(4), 440-448. https://doi.org/10.3796/KSFT.2013.49.4.440
  11. Lee MW, Zhang CI and Lee JW. 2000. Age determination and estimation of growth parameters using otoliths of small yellow croaker, Pseudosciaena polyactis Bleeker in Korean Waters. Bull. Kor Soc Fish Tech 36, 222-233.
  12. Lee SJ. 2011. Stock assessment of elkhorn sculpin (Alcichthys alcicornis) along the Uljin area of Korea. Master's Thesis, Pukyong National University, Korea, p. 60.
  13. Park KD. 2008. Population ecology of black rockfish Sebastes schlegelii in Tongyeong marine ranching area. Ph.D. Thesis. Pukyong National University. Korea, p. 141
  14. Park YC and Choi KS. 2002. Growth and carrying capacity of pacific oyster, crassopstrea gigas, in Kamak Bay, Korea. Korean J Environ Biol 20(4), 378-385.
  15. Pauly D. 1984. Length-converted catch curves. A powerful tool for fisheries research in the tropic (Part 2). ICLARM Fishbyte 2, 9-10.
  16. Seo YI and Zhang CI. 2001. A Study on the multi-gear and multi-species fisheries assessment models in Korean Waters. J Kor Fish Soc 34(4), 355-358.
  17. Ye Y. 1998. Assessing effects of closed seasons in tropical and subtropical penaeid shrimp fisheries using a length-based yield-per-recruit model. ICES J Mar Sci 55, 1112-1124. https://doi.org/10.1006/jmsc.1998.0415
  18. Zhang CI. 1991. Fisheries Resources Ecology. Woosung Publishing Co, Seoul, Korea, 1-399.
  19. Zhang CI. 2010. Fisheries Science Series #1. Marine Fisheries Resources Ecology. Pukyong National University Press, Busan, Korea, 1-561
  20. Zhang CI, Kim SA and Yoon SB. 1992. Stock assessment and management implications of small yellow croaker in Korean Waters. Bull Kor Fish Soc. 25, 282-290.
  21. Zhang CI and Lee JB. 2001. Stock assessment and management implications of horse mackerel in Korean Waters, based on the relationships between recruitment and the ocean environment. Prog. Oceanogr., 49, 513-537. https://doi.org/10.1016/S0079-6611(01)00038-6
  22. Zhang CI and Megrey BA. 2006. A revised Alverson and Carney model for estimating the instantaneous rate of natural mortality. Trans Amer Fish Soc 135(3), 620-633. https://doi.org/10.1577/T04-173.1