• Title/Summary/Keyword: fish viruses

Search Result 65, Processing Time 0.028 seconds

Effect of Fish Pathogenic Viruses on Mariculture of Rainbow Trout (Oncorhynchus mykiss) (해수사육 무지개송어 (Oncorhynchus mykiss)에 미치는 어류 병원성 바이러스의 영향)

  • Kim, Wi-Sik;Jang, Min-Seok;Kim, Jong-Oh;Jeon, Young-Ho;Oh, Myung-Joo
    • Korean Journal of Ichthyology
    • /
    • v.27 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • Recently, mariculture of rainbow trout (Oncorhynchus mykiss) has been initiated in the coast areas of Korea. In the present study, we investigated the effect of fish viruses on mariculture of rainbow trout. The pathogenicity of infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) isolated from freshwater rainbow trout was tested against major cultured marine fish species, including olive flounder (Paralichtys olivaceus), rock fish (Sebastes schlegeli), rock bream (Oplegnathus fasciatus), red seabream (Pagrus major) and sevenband grouper (Epinephelus septemfasciatus). The pathogenicity of marine birnavirus (MABV), hirame rhabdovirus (HIRRV) and nervous necrosis virus (NNV) isolated from marine fish species was also tested against rainbow trout. No mortality was observed in marine fish species challenged with IHNV or IPNV. However, olive flounder and rock bream were infected by IHNV and IPNV. A mortality of 8.3% was observed in rainbow trout challenged with HIRRV. The fish was infected by both MABV and NNV. These results suggest that the mariculture of rainbow trout might be affected by fish viruses.

Monitoring of viruses (IHHNV, TSV, IMNV, YHV, and CMNV) in cultured whiteleg shrimp (Litopenaeus vannamei) between 2018 and 2019 (2018-2019년 양식산 흰다리새우의 바이러스 (IHHNV, TSV, IMNV, YHV, CMNV) 모니터링)

  • Kokkattunivarthil, Shyam;Kim, Wi-Sik
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.71-75
    • /
    • 2020
  • A survey was conducted to investigate viral infections in 184 whiteleg shrimp (Litopenaeus vannamei) collected from nine farms and one wholesale fish vendor during 2018 and 2019. Gill and abdominal muscle of shrimp were tested for the presence of five viruses, viz. infectious hypodermal and haematopoietic necrosis virus, taura syndrome virus, infectious myonecrosis virus, yellow head virus genotype 1, and covert mortality nodavirus by reverse transcription-polymerase chain reaction (RT-PCR) and PCR. These viruses were not detected in any of 184 samples, screened under the study.

Diagnosis of viral fish diseases by polymerase chain reaction - restriction fragment length polymorphism (Polymerase chain reaction - restriction fragment length polymorphism을 이용한 바이러스성 어류 질병 진단)

  • Kim, Myoung-Sug;Park, Shin-Hoo;Cho, Mi-Young;Kim, Jin-Woo;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2008
  • Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was used to detect and identify four fish viruses, fish iridovirus, viral hemorrhagic septicaemia virus (VHSV), viral nervous necrosis virus (VNNV), hirame rhabdovirus (HRV). Four viruses were detected by PCR with each specific primers. Identification of iridovirus was achieved by digesting the PCR amplified fragment with a restriction enzyme ApaⅠ. It was possible to distinguish positive from false positive PCR amplicons of VHSV by RFLP of PstⅠ or HindⅢ restriction enzymes. VNNV was identified using RFLP of BamHⅠrestriction enzyme and HRV was identified by XbaⅠ restriction enzyme. This approach can be used for more rapid, simple and specific diagnosis of fish viral diseases.

Phylogenic Comparison of Viral Nervous Necrosis (VNN) Viruses Occurring Seed Production Period (해산어 종묘 생산 시기에 발생하는 바이러스성 신경괴사증 (VNN) 원인바이러스의 유전학적 비교)

  • Kim Suk Ryol;Jung Sung Ju;Kim Young Jin;Kim Jin Do;Jung Tae Sung;Choi Tae Jin;Yoshimizu Mamoru;Oh Myung Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.237-241
    • /
    • 2002
  • This study was performed both to explore the host of nervous necrosis virus (NNV) between mariculturing fish species and to examine the phylogenic position of the NNV in Korea. NNV was confirmed on the basis of histopathological and molecular biological examination, then VNN infection was Preyed from either moribund or dead fishes including red drum, Sciaenops ocellatus; oblong rock fish, Sebastes oblongus and flounder, Paralichthys olivaceus. As a result of sequencing for a part of ms, virus from red drum was showed $98\%, $97\%, $86\% and $74\% homology with oblong rock fish, grouper, Japanese flounder and striped jack, respectively. On the other hand, NNV from oblong rock fish was demonstrated $96\%, $85\% and $72\% homology with grouper, Japanese flounder and striped jack, respectively. NNV from red drum and oblong rock fish was exhibited phylogenically distant from the representative NNV, SJNNV originated from striped jack. On the contrary, the viruses appeared to be similar species with Taiwan NNV isolated from culturing grouper.

Viruses, Bacteria and Helminths of Invasive Carp: Insights from an In Vitro Assay and a Survey with Native Fishes in a Large Midwestern River

  • Thurner, Kensey;Goforth, Reuben R.;Chen, Shuai;Amberg, Jon;Leis, Eric;Kinsella, John M.;Mahapatra, Cecon;Sepulveda, Maria S.
    • Journal of fish pathology
    • /
    • v.30 no.2
    • /
    • pp.135-148
    • /
    • 2017
  • Pathogen introductions associated with aquatic invasive species threaten ecosystems and biodiversity worldwide. Bigheaded carps (BHC), including Silver Carp Hypophthalmichthys molitrix, Bighead Carp H. nobilis, and their hybrids, are prolific, invasive pests in central US rivers. However, little is known about pathogen effects on invading BHC or how BHC affect the disease risk profile for native fishes in receiving ecosystems. We therefore conducted, from May 2013-December 2014, a systematic pathogen survey for BHC and native fishes in the Wabash River watershed, Indiana, USA. We found Pseudomonas fluorescens, P. putida, and Salmonella enterica DNA in BHC as well as native fishes, although none of these bacteria were exclusively present in BHC. DNA from other bacterial taxa was detected only in native fishes and Common Carp Cyprinus carpio. No gastrointestinal helminths were detected in BHC, although they were common in most native fishes examined. We also conducted in vitro studies on BHC tissues (skin, gill, fin, and fry) and found high sensitivity to Largemouth Bass virus, viral hemorrhagic septicemia virus, and infectious pancreatic necrosis virus. We conclude that BHC are not heavily burdened by bacteria, viruses and parasites in the invaded study ecosystems, although they do harbor native bacteria and show potential for high sensitivity to endemic viruses.

Protection of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus (IHNV) by immunization with G gene's cytoplasmic and transmembrane region-deleted single-cycle IHNV

  • Jae Young, Kim;Jun Soung, Kwak;Hyoung Jun, Kim;Ki Hong, Kim
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.157-165
    • /
    • 2022
  • Single-cycle viruses generated by reverse genetic technology are replication-incompetent viruses due to the elimination of gene(s) essential for viral replication, which provides a way to overcome the safety problem in attenuated viruses. Infectious hematopoietic necrosis virus (IHNV) is a major pathogen causing severe damage in cultured salmonid species. In the present study, we generated a single-cycle IHNV lacking the transmembrane and cytoplasmic domain in the G gene (rIHNV-GΔTM) and evaluated the prophylactic potential of rIHNV-GΔTM in rainbow trout (Oncorhynchus mykiss). To produce rIHNV-GΔTM, IHNV G protein-expressing Epithelioma papulosum cyprini (EPC) cells were established. However, as the efficiency of rIHNV-GΔTM production in EPC cell clones was not high, fish were immunized with a low-tittered single-cycle virus (1.5 × 102 PFU/fish). Despite the low dose, the single-cycle IHNV induced significant protection in rainbow trout against IHNV infection, suggesting high immunogenicity of rIHNV-GΔTM. No significant difference in serum ELISA titers against IHNV between the rIHNV-GΔTM immunized group and the control group suggests that the immunized dose of rIHNV-GΔTM might be too low to induce significant humoral adaptive immune responses in rainbow trout. The involvement of adaptive cellular immunity or innate immunity in the present significantly higher protection by the immunization with rIHNV-GΔTM should be further investigated to know the protection mechanism.

Effect of virus infectivity titer following centrifugation and filtration during virus extraction from fish samples

  • Kim, Wi-Sik;Kim, Jong-Oh;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.28 no.2
    • /
    • pp.113-116
    • /
    • 2015
  • A $0.45-{\mu}m$ membrane filter is generally used to remove bacterial contamination during virus extraction from fish samples. However, the number of fish viruses is drastically reduced after filtration with a $0.45{\mu}m$ filter. In this study, we investigated the effect of filters on virus infectivity titer and the change in virus titer and bacterial number following different centrifugation conditions to determine a suitable procedure for virus extraction from fish samples. $10^{4.05}$ and $10^{5.05}TCID_{50}/ml$ of infectious hematopoietic necrosis virus (IHNV) and $10^{4.05}$ and $10^{4.55}TCID_{50}/ml$ of Oncorhynchus masou virus (OMV) were not detectable after filtration with two types of $0.45-{\mu}m$ filters, except the IHNV titer was reduced by about 10 fold after filter use (company A). No significant difference was found in the virus titer following centrifugation at $880{\times}g$ (30 min) or $3,500{\times}g$ (30 min), whereas IHNV and OMV titers were reduced by about 10 and 10-1000 fold by centrifugation at $14,000{\times}g$ (30 min) and $14,000{\times}g$ (10 and 30 min), respectively. A total of 97.7-99.9% Escherichia coli were eliminated by centrifugation at $880 {\times}g$ (30 min) and $3,500{\times}g$ (30 min). These results show that fish viruses were affected by filtering, even though the effect differed by virus species and filter type. Therefore, centrifugation at $3,500{\times}g$ (30 min) and use of medium with antibiotics may be useful for virus extraction along with a reduction in bacteria.

Monitoring of viruses in wild walleye pollock (Gadus chalcogrammus) population in Korea (국내 자연산 명태(Gadus chalcogrammus) 집단의 바이러스 모니터링)

  • Seo, Hyun-Joon;Nam, U-Hwa;Kim, Jeong-Ho
    • Journal of fish pathology
    • /
    • v.31 no.2
    • /
    • pp.71-79
    • /
    • 2018
  • Wild walleye pollock were caught from Goseong, The East Sea of Korea and examined for the existence of several fish pathogenic viruses; viral hemorrhagic septicemia virus (VHSV), nervous necrosis virus (NNV) and marine birnavirus (MABV). We collected 1,253 wild walleye pollock in total during February 2015 and August 2018. 324 spleen sample sets and 259 brain sample sets were made, and examined for the existence of the viruses mentioned above by reverse transcriptase polymerase chain reaction (RT-PCR). None of the target viruses were detected by one-step PCR. When some of these samples were further examined by two-step PCR, 19.7% (36/183) of spleen sample sets were positive for VHSV, and 4.4% (8/183) of spleen sample sets and 1.2% (3/259) of brain sample sets were positive for NNV. The target sequences of these viruses were clustered with those previously reported in Korea (Genotype IVa of VHSV, RGNNV genotype of NNV) by phylogenetic analysis. The activity of these viruses are not clear because virus isolation was not attempted, but probably very low because all the positive samples were detected by two-step PCR.

Susceptibility of marine medaka Oryzias dancena to fish pathogenic viruses (어류병원바이러스에 대한 해산 송사리 Oryzias dancena의 감수성)

  • Kim, Wi-Sik;Oh, So-Young;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.283-287
    • /
    • 2013
  • The susceptibility of marine medaka, Oryzias dancena to fish pathogenic viruses (infectious pancreatic necrosis virus (IPNV), viral hemorrhagic septicemia virus (VHSV), hirame rhabdovirus (HIRRV), infectious hematopoietic necrosis virus (IHNV), and lymphocystis disease virus (LCDV)) was investigated. The cumulative mortalities of fish immersed with IPNV (experimental condition: $15^{\circ}C$ sea water (SW)), VHSV ($15^{\circ}C$ SW), HIRRV ($15^{\circ}C$ fresh water (FW)) were 30%, 40% and 60%, respectively. In the fish immersed with IPNV ($15^{\circ}C$ FW, $18^{\circ}C$ FW and SW), VHSV ($15^{\circ}C$ FW, $18^{\circ}C$ FW and SW), HIRRV ($15^{\circ}C$ SW), IHNV ($15^{\circ}C$ FW and SW), LCDV ($15^{\circ}C$ FW and SW, $18^{\circ}C$ FW and SW), and mock-challenged group, mortality rate was less than 10%. IPNV, VHSV and HIRRV were re-isolated from the dead fish. These results suggest that marine medaka is susceptible to IPNV, VHSV and HIRRV, although their susceptibility depends on the environmental conditions.

Detection of Fish Pathogenic Viruses in Seawater Using Negatively Charged Membranes (Negatively Charged Membrane을 이용한 해수 중 어류질병바이러스의 검출)

  • Jee, Bo Young;Kim, Kwang Il;Lee, Soon Jeong;Kim, Ki Hong;Jin, Ji Woong;Jeong, Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • After an outbreak of viral disease in an aquafarm, release of virus (es) from infected fish into environmental seawater has been suspected. In the present study, we utilized a negatively charged membrane (HA type) as an efficient method for concentration and detection of fish pathogenic viruses, specifically, megalocytivirus and viral hemorrhagic septicemia virus (VHSV) present in field-collected seawater samples or inoculated into seawater artificially. Positively charged viruses adsorbed onto the negatively charged membrane and were eluted with 1 mM NaOH (pH 10.5) following rinsing with 0.5 mM $H_2SO_4$ (pH 3.0). Megalocytivirus and VHSV particles isolated using anegatively charged HA membrane from seawater inoculated with each virus at a concentration of 10 viral particles/mL were of sufficient quantity to show positive results in atwo-step PCR (or RT two-step PCR); however, despite it being negatively charged, a cellulose acetate (CA) membraneshowed negative results. In quantitative PCR, the detection limits of the HA membrane for megalocytivirus and VHSV in seawater were 1.20E+00 viral particles/mL and 1.22E+01 viralparticles/mL, respectively. The calculated mean recovery yields from 1 L seawater spiked with known concentrations of megalocytivirus and VHSV particles were 28.11% and 23.00%, respectively. The concentrate of a 1-L sample of culturing seawater from the aquatank of flounder suffering from VHSV showed clear positive results in PCR when isolated with an HA, but not a CA, membrane. Thus, viral isolation using an HA membrane is a practical and reliable method for detection of fish pathogenic viruses in seawater.