DOI QR코드

DOI QR Code

Protection of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus (IHNV) by immunization with G gene's cytoplasmic and transmembrane region-deleted single-cycle IHNV

  • Jae Young, Kim (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Jun Soung, Kwak (Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences) ;
  • Hyoung Jun, Kim (OIE Reference Laboratory for VHS, National Institute of Fisheries Science) ;
  • Ki Hong, Kim (Department of Aquatic Life Medicine, Pukyong National University)
  • 투고 : 2022.09.26
  • 심사 : 2022.12.07
  • 발행 : 2022.12.31

초록

Single-cycle viruses generated by reverse genetic technology are replication-incompetent viruses due to the elimination of gene(s) essential for viral replication, which provides a way to overcome the safety problem in attenuated viruses. Infectious hematopoietic necrosis virus (IHNV) is a major pathogen causing severe damage in cultured salmonid species. In the present study, we generated a single-cycle IHNV lacking the transmembrane and cytoplasmic domain in the G gene (rIHNV-GΔTM) and evaluated the prophylactic potential of rIHNV-GΔTM in rainbow trout (Oncorhynchus mykiss). To produce rIHNV-GΔTM, IHNV G protein-expressing Epithelioma papulosum cyprini (EPC) cells were established. However, as the efficiency of rIHNV-GΔTM production in EPC cell clones was not high, fish were immunized with a low-tittered single-cycle virus (1.5 × 102 PFU/fish). Despite the low dose, the single-cycle IHNV induced significant protection in rainbow trout against IHNV infection, suggesting high immunogenicity of rIHNV-GΔTM. No significant difference in serum ELISA titers against IHNV between the rIHNV-GΔTM immunized group and the control group suggests that the immunized dose of rIHNV-GΔTM might be too low to induce significant humoral adaptive immune responses in rainbow trout. The involvement of adaptive cellular immunity or innate immunity in the present significantly higher protection by the immunization with rIHNV-GΔTM should be further investigated to know the protection mechanism.

키워드

과제정보

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. 2021M3E5E6026104).

참고문헌

  1. Alonso, M. and Leong, J.A.: Licensed DNA vaccines against infectious hematopoietic necrosis virus (IHNV). Recent Pat. DNA Gene Seq., 7: 62-65, 2013. https://doi.org/10.2174/1872215611307010009
  2. Ammayappan, A., Lapatra, S.E. and Vakharia, V.N.: A vaccinia-virus-free reverse genetics system for infectious hematopoietic necrosis virus. J. Virol. Methods 167: 132-139, 2010. https://doi.org/10.1016/j.jviromet.2010.03.023
  3. Amend, D.F., Yasutake, W.T. and Mead, R.W.: A hematopoietic virus disease of rainbow trout and sockeye salmon. Trans. Am. Fish. Soc., 98: 796-804, 1969. https://doi.org/10.1577/1548-8659(1969)98[796:ahvdor]2.0.co;2
  4. Anderson, E.D., Mourich, D.V., Fahrenkrug, S.C., La Patra, S., Shepherd, J. and Leong, J.A.: Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol. Mar. Biol. Biotechnol., 5: 114-122, 1996.
  5. Biacchesi, S.: The reverse genetics applied to fish RNA viruses. Vet. Res., 42: 12, 2011.
  6. Biacchesi, S., Thoulouze, M.I., Bearzotti, M., Yu, Y.X. and Bremont, M.: Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. J. Virol., 74: 11247-11253, 2000. https://doi.org/10.1128/JVI.74.23.11247-11253.2000
  7. Dijkstra, J.M,, Fischer, U., Sawamoto, Y., Ototake, M. and Nakanishi, T.: Exogenous antigens and the stimulation of MHC class I restricted cell-mediated cytotoxicity: possible strategies for fish vaccines. Fish Shellfish Immunol., 11: 437-458, 2001. https://doi.org/10.1006/fsim.2001.0351
  8. Dixon, P., Paley, R., Alegria-Moran, R. and Oidtmann, B.: Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review. Vet. Res., 47: 63, 2016.
  9. Guo, M., Shi, W., Wang, Y., Wang, Y., Chen, Y., Li, D., Ren, X., Hua, X., Tang, L., Li, Y. and Liu, M.: Recombinant infectious hematopoietic necrosis virus expressing infectious pancreatic necrosis virus VP2 protein induces immunity against both pathogens. Fish Shellfish Immunol., 78: 187-194, 2018. https://doi.org/10.1016/j.fsi.2018.04.047
  10. Hansen, J.D. and La Patra, S.: Induction of the rainbow trout MHC class I pathway during acute IHNV infection. Immunogenetics 54: 654-661, 2002. https://doi.org/10.1007/s00251-002-0509-x
  11. Kim, M.S. and Kim, K.H.: Generation of VHSV replicon particles carrying transmembrane and C-terminal cytoplasmic region-deleted G gene (rVHSV-GΔTM) and comparison of vaccine efficacy with G gene-deleted VHSV (rVHSV-ΔG). Fish Shellfish Immunol., 88: 231-236, 2019. https://doi.org/10.1016/j.fsi.2019.02.048
  12. Kim, M.S., Park, J.S. and Kim, K.H.: Generation of G gene-deleted viral hemorrhagic septicemia virus (VHSV) and evaluation of its vaccine potential in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 45: 666-671, 2015. https://doi.org/10.1016/j.fsi.2015.05.031
  13. Kurath, G.: Fish novirhabdoviruses. In: Dietzgen, R.G., Kuzman, I.V., editors. Rhabdoviruses: Molecular Taxonomy, Evolution, Genomics, Ecology, Host-Vector Interactions, Cytopathology, and Control. Caister Academic Press; Norfolk, UK. pp. 89-117, 2012.
  14. Lauring, A.S., Jones, J.O. and Andino, R.: Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol., 28: 573-579, 2010. https://doi.org/10.1038/nbt.1635
  15. Lee, K.M., Kim, D.H. and Kim, K.H.: Replication of heterologous glycoprotein-expressing chimeric recombinant snakehead rhabdoviruses (rSHRVs) and viral hemorrhagic septicemia viruses (rVHSVs) at different temperatures. Virus Res., 297: 198392, 2021.
  16. Lorenzen, N., Lorenzen, E., Einer-Jensen, K. and LaPatra, S.E.: DNA vaccines as a tool for analysing the protective immune response against rhabdoviruses in rainbow trout. Fish Shellfish Immunol., 12: 439-453, 2002. https://doi.org/10.1006/fsim.2002.0422
  17. Okamura, S. and Ebina, H.: Could live attenuated vaccines better control COVID-19? Vaccine 39: 5719-5726, 2021. https://doi.org/10.1016/j.vaccine.2021.08.018
  18. Romero, A., Figueras, A., Thoulouze, M.I., Bremont, M. and Novoa, B.: Recombinant infectious hematopoietic necrosis viruses induce protection for rainbow trout Oncorhynchus mykiss. Dis. Aquat. Organ., 80: 123-135, 2008. https://doi.org/10.3354/dao01932
  19. Rouxel, R.N., Tafalla, C., Merour, E., Leal, E., Biacchesi, S. and Bremont, M.: Attenuated infectious hematopoietic necrosis virus with rearranged gene order as potential vaccine. J. Virol., 90: 10857-10866, 2016. https://doi.org/10.1128/JVI.01024-16
  20. Stobart, C.C. and Moore, M.L.: RNA virus reverse genetics and vaccine design. Viruses 6: 2531-2550, 2014. https://doi.org/10.3390/v6072531
  21. Utke, K., Bergmann, S., Lorenzen, N., Kollner, B., Ototake, M. and Fischer, U.: Cell-mediated cytotoxicity in rainbow trout, Oncorhynchus mykiss, infected with viral haemorrhagic septicaemia virus. Fish Shellfish Immunol., 22: 182-196, 2007. https://doi.org/10.1016/j.fsi.2006.04.008
  22. Utke, K., Kock, H., Schuetze, H., Bergmann, S.M., Lorenzen, N., Einer-Jensen, K., Kollner, B., Dalmo, R.A., Vesely, T., Ototake, M. and Fischer, U.: Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus. Dev. Comp. Immunol., 32: 239-252, 2008. https://doi.org/10.1016/j.dci.2007.05.010
  23. Yong, C.Y., Ong, H.K., Tang, H.C., Yeap, S.K., Omar, A.R., Ho, K.L. and Tan, W.S.: Infectious hematopoietic necrosis virus: advances in diagnosis and vaccine development. Peer J., 7: e7151, 2019.
  24. Zhao, J.Z., Xu, L.M., Zhang, Z.Y., Liu, M., Cao, Y.S., Yin, J.S., Liu, H.B. and Lu, T.Y.: Recovery of recombinant infectious hematopoietic necrosis virus strain Sn1203 using the mammalian cell line BHK-21. J. Virol. Methods 265: 84-90, 2019. https://doi.org/10.1016/j.jviromet.2019.01.002