• Title/Summary/Keyword: Single-cycle virus

Search Result 12, Processing Time 0.022 seconds

Use of G gene-deleted single-cycle viral hemorrhagic septicemia virus (VHSV) for delivery of nervous necrosis virus (NNV)-like particles

  • Yang, Jeong In;Kim, Min Sun;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.177-184
    • /
    • 2021
  • Vaccines based on single-cycle viruses that are replication-incompetent due to knockout of replication-related structural gene(s) are more immunogenic than inactivated or subunit vaccines and can be used as delivery vehicles for foreign antigens without concerns on the reverting to virulent forms. The aim of this study was to develop a delivery vehicle for nervous necrosis virus (NNV)-like particles (VLPs) using G gene deleted single-cycle VHSV (rVHSV-𝚫G). Recombinant single-cycle VHSVs carrying NNV capsid protein gene between N and P gene of rVHSV-𝚫G genome (rVHSV-𝚫G-NNVCap) were rescued by reverse genetic technology. The successful expression of NNV capsid protein in cells infected with rVHSV-𝚫G-NNVCap was demonstrated by Western blot analysis, and the production of NNV VLPs in infected cells was confirmed using an electron microscopy. The results suggest that single-cycle VHSVs can be used as a safe delivery vehicle for NNV VLPs, and can be extended to other pathogens for the development of prophylactic vaccines.

Protection of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus (IHNV) by immunization with G gene's cytoplasmic and transmembrane region-deleted single-cycle IHNV

  • Jae Young, Kim;Jun Soung, Kwak;Hyoung Jun, Kim;Ki Hong, Kim
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.157-165
    • /
    • 2022
  • Single-cycle viruses generated by reverse genetic technology are replication-incompetent viruses due to the elimination of gene(s) essential for viral replication, which provides a way to overcome the safety problem in attenuated viruses. Infectious hematopoietic necrosis virus (IHNV) is a major pathogen causing severe damage in cultured salmonid species. In the present study, we generated a single-cycle IHNV lacking the transmembrane and cytoplasmic domain in the G gene (rIHNV-GΔTM) and evaluated the prophylactic potential of rIHNV-GΔTM in rainbow trout (Oncorhynchus mykiss). To produce rIHNV-GΔTM, IHNV G protein-expressing Epithelioma papulosum cyprini (EPC) cells were established. However, as the efficiency of rIHNV-GΔTM production in EPC cell clones was not high, fish were immunized with a low-tittered single-cycle virus (1.5 × 102 PFU/fish). Despite the low dose, the single-cycle IHNV induced significant protection in rainbow trout against IHNV infection, suggesting high immunogenicity of rIHNV-GΔTM. No significant difference in serum ELISA titers against IHNV between the rIHNV-GΔTM immunized group and the control group suggests that the immunized dose of rIHNV-GΔTM might be too low to induce significant humoral adaptive immune responses in rainbow trout. The involvement of adaptive cellular immunity or innate immunity in the present significantly higher protection by the immunization with rIHNV-GΔTM should be further investigated to know the protection mechanism.

Gene Therapy Using GM-CSF Gene Transferred by a Defective Infectious Single-cycle Herpes Virus in Micro-residual Organotropic Head and Neck Squamous Cell Cancer Model (향장기성 두경부 편평세포암종의 미세잔존암 모델에서 GM-CSF 유전자를 이입시킨 제한복제성 헤르페스바이러스 벡터를 이용한 종양백신의 유전자 치료)

  • Kim Se-Heon;Choi Eun-Chang;Kim Han-Su;Chang Jung-Hyun;Kim Ji-Hoon;Kim Kwang-Moon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • Background and Objectives: The Herpes Simplex type 2 Defective Infectious Single Cycle virus (DISC virus) is attenuated virus originally produced as viral vaccines but are also efficient gene transfer vehicle. The main goals of this study were to examine the efficiencies of the gene transfer using DISC vectors for various head and neck squamous cell carcinoma cell lines and to evaluate the efficacy of vaccination with DISC virus carrying a immunomodulatory genes (GM-CSF) as cancer therapy in a organotopic oral cavity squamous cell cancer model. Materials and Methods : We determinated the gene transfer efficiency of DISC virus by x-gal stain method and proved gene and protein expression of DISC-GMCSF transfected SCCVII cells by RT-PCR and ELISA method. Also we evaluated the ex vivo vaccination effects of SCCVII/GMCSF (DISC-GMCSF transfected SCCVII vaccine) vaccine on preventing the recurrence of micro-residual tumor. After the vaccination of SCCVII/GMCSF, specific cytotoxic T-cell responses was evaluated by CTL assay. Results: At an MOI of 10 DISC virus showed 64-88% of transfection rates in various head and neck squamous cancer cell lines. SCCVII cells transduced by DISC virus vector (MOI=10) carrying the GM-CSF gene, produced 4.5 nanogram quantities of GM-CSF per $10^6$ cells. In vivo vaccination using tumor cells transduced ex vivo with DISC-GMCSF resulted in better protection rate against subsequent tumor recurrence in organotopic oral cavity cancer model. Although tumor free survival rate was not statistically significantly increased in vaccination group (p=0.078), tumor specific cytotocic T-cell responses were significantly increased in SCCVII/GMCSF vaccination group. Conclusion: These data demonstrate that; 1) The DISC virus vector is capable of efficient gene transfer to various head and neck squamous cancer cell lines, 2) GM-CSF secreting genetically modified tumor vaccine (SCCVII/GMCSF) efficiently protected against tumor recurrence in organotopic micro-residual oral cavity cancer model and produced tumor specific cytotoxic T-cell response. DISC virus-mediated, cytokine gene transfer may prove to be useful as a clinical therapy for head and neck cancers.

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

Methed for the Passaging of Microcarrier Cultures to a Production Scale for Producing High Titre Disabled Infectious Single Cycle-Herpes Simplex virus Type-2

  • Zecchini, Tracey-Ann;Wright, Paul-Andrew;Smith, Rodney-John
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.118-122
    • /
    • 2000
  • A comlementary call line CR2 is curretly used to propagte the Disabled Infectious Single Cycle Herpes Simplex Virus Typee2 (DISC HSV-2) on a small Iaboratory scale upto 15 L. These cultures are initiated by passaging the cells from roller bottle cultures. Whilst this is suitable for the laboratory scale it is totally impractical for use in seeding an industrial manufacturing scaled version of the culture. It is paramount to have a robust system for passaging cells from a small microcarrierier culture system to a larger one by a serial subculturing regime. Here we report on the successes we have had in our laboratory in scaling up out production system for the DISC HSV-2 from small 1-L cultures to a 50-L vessel with the maintenance of the viral productivity. Ease of use, reproducibility and the need to minimise overall production time were factors which were taken into consideration whils developing our procedures. We were aware of the need to keep a production train simple and as short as possible as this was the amall scale study for an envisaged manufacturing process.

  • PDF

Polymerase chain reaction for the detection of Newcastle disease virus (닭 뉴캐슬병 바이러스의 특이 검출을 위한 polymerase chain reaction 법)

  • Yeo, Sang-geon;Kim, Do-kyoung;Park, Seon-ja
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.565-573
    • /
    • 1998
  • To study the specific tools for the diagnosis of Newcastle disease virus (NDV) in chicken, polymerase chain reaction (PCR) and its presumable conditions were evaluated for the detection of hemagglutinin-neuraminidase (HN) gene of NDV RNA. For these purposes, Kyojeongwon strain of the NDV was propagated in allantoic cavity of SPF embryonating chicken eggs, and viral RNA was extracted from fractionated virus after the allantoic fluids were ultracentrifuged with sucrose gradient. The first-strand cDNA was then made for the HN gene of NDV RNA by reverse transcription at $42^{\circ}C$ for 1 hour using specific primer complementary to the HN gene. The single-stranded cDNA was used as template in the PCR of the HN-DNA, and various conditions of the PCR were evaluated to set up method for the specific detection of the HN-DNA. The PCR conditions promising for the detection of HN gene consist of preheating at $94^{\circ}C$, 5 min, 30 cycles of denaturation at $94^{\circ}C$, 1 min, annealing at $55^{\circ}C$, 1 min and polymerization at $72^{\circ}C$, 2 min, and a cycle of extension at $72^{\circ}C$, 5 min. when NDVs of allantoic fluids without fractionation were applied to the above PCR condition, the HN genes were detected effectively not only from Kyojeongwon but from other velogenic strains such as Herts and a field isolate.

  • PDF

ORF5a Protein of Porcine Reproductive and Respiratory Syndrome Virus is Indispensable for Virus Replication (PRRS 바이러스 ORF5a 단백질의기능학적역할)

  • Oh, Jongsuk;Lee, Changhee
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, a DNA-launched reverse genetics system was developed from a type 2 porcine reproductive and respiratory syndrome virus (PRRSV) strain, KNU-12. The complete genome of 15,412 nucleotides was assembled as a single cDNA clone and placed under the eukaryotic CMV promoter. Upon transfection of BHK-tailless pCD163 cells with a full-length cDNA clone, viable and infectious type 2 progeny PRRSV were rescued. The reconstituted virus was found to maintain growth properties similar to those of the parental virus in porcine alveolar macrophage (PAM) cells. With the availability of this type 2 PRRSV infectious clone, we first explored the biological relevance of ORF5a in the PRRSV replication cycle. Therefore, we used a PRRSV reverse genetics system to generate an ORF5a knockout mutant clone by changing the ORF5a translation start codon and introducing a stop codon at the 7th codon of ORF5a. The ORF5a knockout mutant was found to exhibit a lack of infectivity in both BHK-tailless pCD163 and PAM-pCD163 cells, suggesting that inactivation of ORF5a expression is lethal for infectious virus production. In order to restore the ORF5a gene-deleted PRRSV, complementing cell lines were established to stably express the ORF5a protein of PRRSV. ORF5a-expressing cells were capable of supporting the production of the replicationdefective virus, indicating complementation of the impaired ORF5a gene function of PRRSV in trans.

Application of HIV-1 Complementation System to Screen the Anti-AIDS Agents That Targets the Late Stage of HIV-1 Replication Cycle (바이러스 생활환의 후기 단계에 작용하는 항AIDS제의 탐색을 위한 HIV-1 Complementation System의 응용)

  • Ryu, Ji-Yoon;Choi, Soo-Young;Kim, Yung-Hi;Park, Jin-Seu
    • The Journal of Korean Society of Virology
    • /
    • v.30 no.3
    • /
    • pp.161-170
    • /
    • 2000
  • Continuous efforts are being made to find effective therapeutic agents against HIV-1, the causative agents of AIDS. In this study, we developed a cell-based assay system employing a trans-complementation for production of recombinant viruses which are capable of undergoing one round of replication in CD4+ T cells. This assay system was tested for ability to screen the agents that act at late stage of HIV-1 life cycle. The effect of a protease inhibitor on the trans-complementation assay was assessed. Recombinant HIV-1 viruses were prepared from a trans-complementation in the presence of various concentrations of protease inhibitor. Inhibition of single round infection of these recombinant viruses by protease inhibitor was observed to be a dose-dependent manner. Inhibitory effects of a protease inhibitor on HIV-1 Gag polyprotein processing by HIV-1 protease was detected at concentrations of the protease inhibitor compatible with inhibition of virus infection, confirming that the corresponding step was involved in the inhibitory mechanism of this compound. Together, these results provide evidence that a cell-based assay system established in this study can be used to screen the agents that target the late stage of HIV-1 life cycle.

  • PDF

Severe Fever with Thrombocytopenia Syndrome Virus in Ticks in the Republic of Korea

  • Kang, Jun-Gu;Cho, Yoon-Kyoung;Jo, Young-Sun;Han, Sun-Woo;Chae, Jeong-Byoung;Park, Jung-Eun;Jeong, Hyesung;Jheong, Weon-Hwa;Chae, Joon-Seok
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.1
    • /
    • pp.65-71
    • /
    • 2022
  • Severe fever with thrombocytopenia syndrome virus (SFTSV) is a zoonotic, tick-borne RNA virus of the genus Bandavirus (Family Phenuiviridae), mainly reported in China, Japan, and the Republic of Korea (Korea). For the purpose of this study, a total of 3,898 adult and nymphal ticks of species Haemaphysalis longicornis (94.2%), Haemaphysalis flava (5.0%), Ixodes nipponensis (0.8%), and 1 specimen of Ixodes ovatus, were collected from the Deogyusan National Park, Korea, between April 2016 and June 2018. A single-step reverse transcriptase-nested PCR was performed, targeting the S segment of the SFTSV RNA. Total infection rate (IR) of SFTSV in individual ticks was found to be 6.0%. Based on developmental stages, IR was 5.3% in adults and 6.0% in nymphs. The S segment sequences obtained from PCR were divided into 17 haplotypes. All haplotypes were phylogenetically clustered into clades B-2 and B-3, with 92.7% sequences in B-2 and 7.3% in B-3. These observations indicate that the Korean SFTSV strains were closer to the Japanese than the Chinese strains. Further epidemiological studies are necessary to better understand the characteristics of the Korean SFTSV and its transmission cycle in the ecosystem.