• Title/Summary/Keyword: firing schedule

Search Result 13, Processing Time 0.026 seconds

A Study of Nucleation and Growth in Zinc Crystal Glaze by Firing Conditions (아연결정유의 제조에 있어서 소성조건에 따른 결정생성과 성장에 관한 연구)

  • Lee, Chi-Youn;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.253-262
    • /
    • 2009
  • The purpose of this study is to find out optimum conditions for zinc crystalline glaze under variables of firing: maximum firing temperature, crystal growth temperature, temperature increasing speed, annealing speed, holding time at maximum temperature and holding time at crystal growth temperature. Ferro Frit3110, ZnO and Quartz were used as starting materials and tested by three component system. The best result of test was selected and extended to its vicinity as five glaze formulas. And then the specimens were experimented by variable firing conditions and analyzed by crystal appearance observation, XRD, FT-IR and Raman spectroscopy. In result, main crystal was willemite in the zinc glazes. Some gahnite was detected in specimens which were fired at $1230^{\circ}C$, $1250^{\circ}C$ and $1270^{\circ}C$, however gahnite was not identified at $1300^{\circ}C$. Optimum zinc crystalline glaze was gained by following firing condition: temperature increasing speed $5^{\circ}C$/min, holding 1 h at $1270^{\circ}C$, annealing speed $3^{\circ}C$/min till $1170^{\circ}C$, holding 2 h at $1170^{\circ}C$ then naturally annealed.

Removal Phenomenon of Black Core in Clay Brick Containing High Carbon Content (고탄소질함유 점토벽돌의 내부흑심제거 속도에 대한 연구)

  • Jung, Jin-Ho;Kim, Hyun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.315-319
    • /
    • 2006
  • There have been some studies on the use of coal waste as a raw material for clay bricks due to the lack of naturally producing minerals. It can help resolving the problems of pollution, forest conservation and flood control by utilizing coal waste. However, high content of carbon materials usually leads to the black core in clay bricks after firing process, and diminishes the mechanical and aesthetical properties of clay brick. In this study, the effect of firing process is investigated for the removal of black core in clay bricks with carbon content. The removal kinetics of black core are also compared and investigated with the firing schedule and black core removal.

Effect of(Si+C) Content on the Strength of SiC-(Si+C) Sintered Bodies (SiC-(Si+C) 소결체의 강도에 미치는 (Si+C)첨가량의 영향)

  • 김은태;김완덕;최진영;우정인
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.9-14
    • /
    • 1986
  • $\beta$-SiC bonded SiC bodies were prepared from various conditions such as several compositions of(Si+C)/$\alpha$ -SiC ratio and different firing schedules and were respectively investigated compressive strength MOR and mi-crostructure. One firing schedule which produced the specimens that had $\beta$-SiC neck form with the highest strength was selected and experimented by each firing temperature. results obtained are as follows : 1) The amount of (Si+C) for th highest MOR of SiC-(Si+C) sintered body is 20wt% 2) By adding 20wt% content of (Si+C) and heating up to 1, 500 with soaking 3hrs respectively at 1,150$^{\circ}C$ 1,250$^{\circ}C$ 1,350$^{\circ}C$ and 1,400$^{\circ}C$ the highest MOR of fired specimen was resulted and its microstructure of ma-trix was composed of close $\beta$-SiC neck. 3) Microstructure of $\beta$-SiC were different greatly from each other by firing time and/or quantity of adding mix-ture and it was confirmed that they were composed of neck particle-like and heterogeneous texture. 4)$\beta$-SiC synthesis proceed rapidly at the temperature between 1,250$^{\circ}C$ and 1,350$^{\circ}C$ 5) All of the properties of 85 SiC-20(Si+C) specimen improved according to increasing temperature above 1,350$^{\circ}C$.

  • PDF

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

Diopside Crystal Glaze Using Seed (Seed를 사용한 Diopside 결정유약)

  • Byeon, Soo Min;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.407-412
    • /
    • 2014
  • Currently, diopside ($MgCaSi_2O_6$) crystal glaze is used frequently for pottery works or in earthen wares, though the process is not straightforward. However, to create and control the positions and sizes of the crystals in desired amounts when making pottery is difficult. To solve this problem, a diopside crystal seed was created at a temperature of $1450^{\circ}C$. After planting this seed in the glaze, a glaze combination and firing process which allows a user to create crystals with the desired position and at the desired size were established. In addition, in order to investigate the creation process of the crystals, the growth patterns of the crystals were observed and examined using Raman spectrography and XRD and SEM analyses. As a result, the optimum synthesis condition of the diopside seed was created by mixing 1 mole of $CaCo_3$, 0.2 mole of $(MgCo_3)_4(MgCoH)_2{\cdot}5H_2O$ and 2 moles of $SiO_2$ and then applying a firing process to the mixture at $1,450^{\circ}C$ for 30 minutes. The optimum glaze content of the seed was 70 % feldspar, 20 % limestone and 10 % $MgCo_3$. For the firing process, it was confirmed that the size of crystal is larger with a longer firing time at $1100^{\circ}C$ by completing a two-hour process at $1280^{\circ}C$. In addition, the diopside crystal has columnar structure and is less than $1{\mu}m$ in size.

An Optimization of the Planned Target Sequencing Problem Using Scheduling Method (스케줄링을 이용한 계획표적 사격순서의 최적화 방안)

  • Hwang, Won-Shik;Lee, Jae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.105-115
    • /
    • 2007
  • It is essential to give a fatal damage to the enemy force by using prompt and accurate fire in order to overcome the lack of artillery force. During the artillery fire operations, minimizing the firing time will secure the adapt ability in tactical operation. In this paper, we developed a mathematical model to schedule the artillery fire on the multiple targets to decrease total fire operation time. To design a program to describe a real firing situation, we consider many possible circumstances of changes such as commander's intention, firing constraints, target priority, and contingency plan to make a fire plan in an artillery unit. In order to work out the target sequencing problem, MIP is developed and the optimum solution is obtained by using ILOG OPL. If this analytical model is applied to a field artillery unit, it will improve the efficiency of the artillery fire force operations.

Three Dimensionally Ordered Microstructure of Polycrystalline Zirconia Ceramics with Micro-Porosity

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • In order to make a highly ordered three-dimensionally macro-porous structure of zirconia ceramics, porogen precursors PMMA beads were prepared by emulsion polymerization using acrylic monomer. The monodisperse PMMA latex beads were closely packed by centrifugation as a porogen template for the infiltration of zirconium acetate solution. The mixed compound of PMMA and zirconium acetate was dried. According to the firing schedule, dry compacts of PMMA and zirconium acetate were calcined at $475^{\circ}C$ to obtain micro-, macro-, and meso- structures of polycrystalline zirconia with monodispersed porosity. Inorganic frameworks composed of $ZrO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $ZrO_2$ ceramics. The obtained $ZrO_2$ skeleton was calcined at $710^{\circ}C$. The 3DOM $ZrO_2$ skeleton showed color tuning in solutions such as deionized [DI] $H_2O$ and/or methanol. The monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM.

Reconfigurable SoC Design with Hierarchical FSM and Synchronous Dataflow Model (Hierarchical FSM과 Synchronous Dataflow Model을 이용한 재구성 가능한 SoC의 설계)

  • 이성현;유승주;최기영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.619-630
    • /
    • 2003
  • We present a method of runtime configuration scheduling in reconfigurable SoC design. As a model of computation, we use a popular formal model of computation, hierarchical FSM (HFSM) with synchronous dataflow (SDF) model, in short, HFSM-SDF model. In reconfigurable SoC design with HFSM-SDF model, the problem of configuration scheduling becomes challenging due to the dynamic behavior of the system such as concurrent execution of state transitions (by AND relation), complex control flow (HFSM), and complex schedules of SDF actor firing. This makes it hard to hide configuration latency efficiently with compile-time static configuration scheduling. To resolve the problem, it is necessary to know the exact order of required configurations during runtime and to perform runtime configuration scheduling. To obtain the exact order of configurations, we exploit the inherent property of HFSM-SDF that the execution order of SDF actors can be determined before executing the state transition of top FSM. After obtaining the order information and storing it in the ready configuration queue (ready CQ), we execute the state transition. During the execution, whenever there is FPGA resource available, a new configuration is selected from the ready CQ and fetched by the runtime configuration scheduler. We applied the method to an MPEG4 decoder and IS95 design and obtained up to 21.8% improvement in system runtime with a negligible overhead of memory usage.

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.