• 제목/요약/키워드: fire resistance check

검색결과 12건 처리시간 0.024초

The Chinese Performance-based Code for Fire-resistance of Steel Structures

  • Li, Guo-Qiang;Zhang, Chao
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.123-130
    • /
    • 2013
  • In the past two decades, researchers from different countries have conducted series of experimental and theoretical studies to investigate the behaviour of structures in fire. Many new insights, data and calculation methods have been reported, which form the basis for modern interdisciplinary structural fire engineering. Some of those methods are now adopted in quantitative performance-based codes and have been migrated into practice. Mainly based on the achievements in structural fire research at China, the Chinese national code for fire safety of steel structures in buildings has been drafted and approved, and will be released in this year. The code is developed to prevent steel structures subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. This paper presents the main contents of the code, which includes the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and structural components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant check and design of steel components. The analytical approaches employed in the code and their validation works are also presented.

단일 및 복합 원인에 의한 단자대 전기화재위험성에 관한 연구 (A Study on the Electrical Fire Risk of Terminal Block Due to Single and Composite Cause)

  • 김시국;금동신;이춘하
    • 한국화재소방학회논문지
    • /
    • 제29권5호
    • /
    • pp.57-66
    • /
    • 2015
  • 본 논문은 단자대에서 단일원인 및 복합원인에 의한 전기화재위험성을 규명하기 위한 연구이다. 우선적으로 단일원인인 접촉불량에 의한 화재위험성을 측정하기 위해 조임토크변화 및 접촉저항변화에 따른 열적특성을 분석하였다. 또한, 복합원인에 의한 화재위험성을 측정하기 위해 접촉저항변화에 따른 가속트래킹 실험을 실시하여 접촉불량과 트래킹의 화재연관성을 확인하였다. 실험결과 단일원인의 경우 접촉불량상태의 조임토크 및 접촉저항 크기가 증가할수록 열적특성이 뚜렷하게 나타나는 것을 확인할 수 있었고, 접촉저항변화에 따른 열적특성이 조임토크변화에 따른 열적특성보다 그 특성이 더 잘 나타났다. 또한, 복합원인의 경우 단자대 접촉불량과 트래킹은 상호연관성을 가지고 있으며, 두 가지의 복합적인 원인이 서로 작용될 경우 기존의 단일원인의 전기화재 위험성보다 상대적인 위험성이 더욱 높게 나타나는 것으로 도출되었다.

REQUIREMENTS FOR AUTOMATED CODE CHECKING FOR FIRE RESISTANCE AND EGRESS RULE USING BIM

  • Jiyong Jeong;Ghang Lee
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.316-322
    • /
    • 2009
  • The more repetitive, complex and objective the work, the more effective automation is. Code checking is an example of this. Checking building codes through a thick set of drawings is error-prone and time-consuming. In order to overcome this problem, several organizations have initiated efforts to automate building-code checking. Initiated study mainly focused on checking codes for invalidation, required size and crash, and then area of checkable codes have been expanding. But, it has not been considered for codes regarding anti-disaster/egress, which is also issued these days. This study is about how to automatically check codes for anti-disaster and egress based on Korea building codes. The codes can be categorized as five sections: egress way, material/capability, principals of evacuation, evacuation stairway and fire protection partition. To check automatically, there are problems, such as expression of codes for egress and limitation of extractable information from the BIM model. This paper shows what problems exist and assignments to be resolved. Also, current developing processes are presented, and suggestions are made about the direction for the work that remains.

  • PDF

Analysis of a damaged industrial hall subjected to the effects of fire

  • Kmet, Stanislav;Tomko, Michal;Demjan, Ivo;Pesek, Ladislav;Priganc, Sergej
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.757-781
    • /
    • 2016
  • The results of diagnostics and analysis of an industrial hall located on the premises of a thermal power plant severely damaged by fire are presented in the paper. The comprehensive failure-related diagnostics, non-destructive and destructive tests of steel and concrete materials, geodetic surveying of selected structural members, numerical modelling, static analysis and reliability assessment were focused on two basic goals: The determination of the current technical condition of the load bearing structure and the assessment of its post fire resistance as well as assessing the degree of damage and subsequent design of reconstruction measures and arrangements which would enable the safe and reliable use of the building. The current mechanical properties of the steel material obtained from the tests and measured geometric characteristics of the structural members with imperfections were employed in finite element models to study the post-fire behaviour of the structure. In order to compare the behaviour of the numerically modelled steel roof truss, subjected to the effects of fire, with the real post-fire response of the damaged structure theoretically obtained resistance, critical temperature and the time at which the structure no longer meets the required reliability criteria under its given loading are compared with real values. A very good agreement between the simulated results and real characteristics of the structure after the fire was observed.

뿜칠피복 각형 강관의 내화성능 평가를 위한 실험적 연구 (An Experimental Study on the Evaluation of the Fire-Resistance Performance of a Spray-Applied Rectangular Steel Structure)

  • 옥치열;김재준
    • 한국공간구조학회논문집
    • /
    • 제17권1호
    • /
    • pp.41-47
    • /
    • 2017
  • Structures of steel frame buildings getting vary depending on the development of construction technology. Fire-resistant steel beams and Columns accredited by accreditation bodies from the performance of various fire-resistant coating is applied to the current pillar method is most H-beams. H-beam has been proposed a non-load test specifications in the relevant regulations, its scope of accreditation to be granted without limitation of size H-beams from the performance of the test specification. However, in the case of the rectangular steel structure is to check its performance and to a separate one of the receive acknowledge and so take advantage of the cross-sectional shape factor in this study to test the performance of the fire-resistant structure proposed for standard test specimen.

선박화재 적용 단백포 소화약제의 안정제에 따른 소화특성 (Characteristics of Protein Foam Agent by Stabilizer on the Ship Fire Extinguishment)

  • 이응우;신창섭
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.79-85
    • /
    • 2015
  • Onboard fire extinguishing system is important to protect cargo and human lives and every oil tanker has foam type fire extinguishing system. Because of environmental problem, agent which contains materials such as Perfluorinated compounds are regulated and the development of the environmental friendly agent is required. The protein foam has less environmental pollution problem and has an excellent fire extinguish performance to oil fire. In the research, bivalency metal salts were added as stabilizer to increase fire resistance and stability of the foam. Ferrous sulfate, Iron chloride and Nickel chloride were used and to adjust to vessel, sea water was applied. As a stabilizer increased, the expansion ratio was raised. However 25% drainage time was decreased over 2.0 wt.% which is knowable that the foam brokes easily. The amount of generated foam was measured to check fluidity of foam and it appeared that when $FeSO_4$ 1.2 wt.% was added, the amount of generated foam reached large and also the 25% drainage time was high. To evaluate the fire extinguishing performance for oil fire, the small scale oil fire test was executed. When $FeSO_4$ 1.2 wt.% was added, fire extinguishing time was in its shortest which informs fluidity of foam and stability are important factors on fire extinguishing efficiency.

SC 합성기둥의 내화성능에 대한 해석연구 (Analytical Study on the Fire Resistance of SC Composite Column)

  • 임윤희;강성덕;오명호;김명한;김상대
    • 한국강구조학회 논문집
    • /
    • 제19권3호
    • /
    • pp.335-344
    • /
    • 2007
  • 기존 합성기둥의 장점을 유지하면서 콘크리트 충전 시 거푸집 공사의 절감과 충전상태의 육안 확인이 가능한 철골 콘크리트 합성기둥(이하 SC 합성기둥)에 대한 연구가 활발히 진행되고 있다. SC 합성기둥은 콘크리트가 철골의 웨브를 둘러싸고 있어 화재 발생시 높은 열이 웨브까지 전달되는 시간을 지연시켜 뛰어난 내화성능을 가질 것으로 예상할 수 있다. 본 연구에서는 SC 합성기둥에 대해 열전달 해석을 수행하였고, 이를 바탕으로 P-M 상관 곡선을 이용하여 내화성능을 평가를 하였고, 이때의 해석변수는 콘크리트 면적비와 내화피복두께로 하였다. 또한 열전달 해석 방법을 검증하기 위해서 실제 수행된 실험 결과와 비교하여 이의 적절성을 검증하였다.

민속마을 초가집의 방염에 의한 화재확산방지 (Fire Spreading Prevention of Straw-roofing House in Folk Village by Flame Resistant Treatment)

  • 박호천;김황진;이승현;이성은;오규형
    • 한국화재소방학회논문지
    • /
    • 제24권3호
    • /
    • pp.52-57
    • /
    • 2010
  • 본 논문에서는 방염에 의한 초가지붕과 목재구조에 대한 화재 예방대책을 고찰하였다. 초가지붕 재료인 볏짚에 함침시간을 달리하여 방염처리를 한 후 물에 침수시켜 세척한 후에도 방염성능을 유지하는지 확인하였다. 목재는 방염처리 방법에 따른 방염효과를 비교분석하기 위하여 상압함침법과 진공가압법, 붓칠 등의 방법으로 방염처리 하였다. 볏짚의 방염성능은 콘 히터를 이용하여 착화지연시간을 측정하였으며 목재의 방염성능은 45도 연소시험과 콘 히터 실험을 통해 실험하였다. 실험 결과 특수 가연물인 볏짚의 경우 방염처리한 볏짚의 착화지연시간이 처리되지 않은 것보다 훨씬 길게 나타났으며 방염처리 후 물에 침수시켜 세척한 경우에도 처리되지 않은 시료에 비하여 착화지연시간이 길게 나타나 방염성능을 유지하는 것으로 나타났다. 목재의 경우 진공가압법으로 방염처리한 시료의 방염효과가 가장 우수하였고 붓칠이나 상압함침한 경우에도 처리하지 않은 것보다 착화지연시간이 길게 나타나 화재 확산 예방에 효과가 있음을 알 수 있었다.

무기계 방염제와 인계 방염제 혼합비율에 따른 기능성 오일스테인의 방염성능 (Flame Retardant Performance of Functional Oil Stains According to the Mixing Ratio of Inorganic Flame Retardants and Phosphorus Flame Retardants)

  • 이주원;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.29-30
    • /
    • 2023
  • Wood is a construction material that has the advantages of carbon dioxide storage ability, noise reflection, and eco-friendliness. In order to use wood for a long time, you must use wood-specific paint, which is called oil stain. Oil stain improves water resistance and moisture resistance, but has the disadvantage of being weak against fire. This is because the oil contained in the oil stain causes a chemical reaction, and this chemical reaction causes the oil stain to spontaneously ignite, igniting nearby combustible materials and causing frequent fires. To improve this, in this study, different flame retardants were mixed and added to oil stain to produce functional oil stain. In addition, we would like to apply it to wood to check glow time and carbonization area. As a result of the experiment, it shows the best performance when mixed at 30(15 + 15)(%) and added to oil stain. The remaining burn time is satisfied from 10% for all samples, and the carbonized area is satisfied when it is 30%.

  • PDF

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.