• Title/Summary/Keyword: fire fuel

검색결과 426건 처리시간 0.031초

소화근처 헵탄 풀화재의 화염불안정성 (Flame Instability in Heptane Pool Fires Near Extinction)

  • 정태희;이의주
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1193-1199
    • /
    • 2012
  • 액체연료를 사용하는 풀화재에서 화염불안정성에 대하여 산화제 유속변화와 농도변화의 효과를 알아보기 위해 컵버너 실험을 수행하였다. 연료는 헵탄을 사용하였고, 산화제는 공기에 질소와 이산화탄소를 희석하였다. 소화근처에서 축방향 및 화염 밑면에서 두 가지 형태의 대표적인 불안정성이 관찰되었다. 화염 밑면에서 발생되는 불안정성은 셀, 스윙, 회전 모드로 특성화 할 수 있고, 산화제의 유속이 증가할수록 모든 불활성 기체에서 셀, 스윙 모드에서 회전모드로 천이하였다. 이러한 화염밑면 불안정성에 영향을 미치는 변수들을 파악하기 위하여 초기혼합률, Le 수, 단열화염온도에 대해서도 함께 조사되었다. 이 중 Le 수가 불안정성 모드와 가장 큰 상관관계를 보이고 있지만 보다 정확한 관계를 규명하기 위해서는 더 많은 실험조건에서의 결과가 요구된다. 또한, 소화농도근처의 화염에서는 유속이 작거나 큰 경우에는 축방향 주기적인 진동불안정성이 나타나지 않고, 적절한 산화제 속도 영역에서만 관찰된다. 이는 작은 유속에서는 증발하는 연료속도가 임계유속이하이며, 큰 유속에서는 반응중인 연료유속과 산화제 유속이 유사하기 때문으로 판단된다.

액체로켓엔진 축소형 고압 연소기 설계

  • 한영민;김승한;서성현;이광진;김종규
    • 항공우주기술
    • /
    • 제4권2호
    • /
    • pp.135-141
    • /
    • 2005
  • 본 논문에서는 와류형 및 충돌형 분사기를 가진 액체로켓엔진용 축소형 연소기의 기본 설계 및 상세설계에 대해 기술하였다. 와류분사기는 내부에 액체산소 외부에 케로신을 공급하여 노즐 내부 또는 외부에서 혼합하는 구조를 가지고 있다. 축소형 연소기는 분사기 헤드, 삭마 냉각방식의 내열재 연소실 그리고 물냉각 노즐로 구성되어 있다. 분사기 헤드는 18개의 주 분사기, 하나의 중앙 분사기, 연료 메니폴드, 산화제 매니폴드 그리고 추진제 분배기 등으로 구성되어 있다.

  • PDF

밸브오버랩기간 변화에 의한 흡기관 분사식 수소기관의 역화억제에 관한 연구 (A Study of Backfire Control in a Hydrogen-Fueled Engine with External Mixture Using Changes of Valve Overlap Period)

  • 강준경;;노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3311-3316
    • /
    • 2007
  • To analyze the influence of valve overlap period on a backfire occurrence, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and backfire limit equivalence ratio defined as fuel-air ratio equivalence ratio at which backfire occurs is examined according to various valve overlap period. The MCVVT is the system to control valve overlap period by mechanical device. It is estimated that the lower valve overlap period has the higher backfire limit equivalence ratio though the same energy is supplied. When the valve overlap period is changed from 30$^{circ}$ CA to 0$^{circ}$ CA, backfire limit equivalence ratio is increased 74%, approximately. It means that valve overlap period is concern in backfire occurrence, and may be one of the methods for controlling back fire occurred in a $H_2$ engine.

  • PDF

Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations

  • Terzi, Niyazi U.;Erenson, C.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.447-464
    • /
    • 2015
  • Millions of scrap tires are discarded annually in Turkey. The bulk of which are currently landfilled or stockpiled. These tires consume valuable landfill space or if improperly disposed, create a fire hazard and provide a prolific breeding ground for rats and mosquitoes. Used tires pose both a serious public and environmental health problem which means that economically feasible alternatives for scrap tire disposal must be found. Some of the current uses of scrap tires are tire-derived fuel, creating barrier reefs and as an asphalt additive in the form of crumb rubber. However, there is a much need for the development of additional uses for scrap tires. One development the creation of shreds from scrap tires that are coarse grained, free draining and have a low compacted density thus offering significant advantages for use as lightweight subgrade fill and backfill material. This paper reports a comprehensive laboratory study that was performed to evaluate the use of a shredded tire-sand mixture as a backfill material in trench conditions. A steel frame test tank with glass walls was created to replicate a classical trench section in field conditions. The results of the test demonstrated that shredded tires mixed with sand have a definite potential to be effectively used as backfill material for buried pipe installations.

BTX(Benzene, Toluene, Xylenes)의 자연발화온도와 발화지연시간의 측정 (Measurements of Autoigniton Temperature(AIT) and Time Lag of BTX(Benzene, Toluene, Xylenes))

  • 하동명
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.45-52
    • /
    • 2006
  • The AITs(autoignition temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are often used as a factor in determining the upper temperature limit for processing operations and conditions for handling, storage and transportation, and in determining potential fire hazard from accidental contact with hot surfaces. The measurement AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, time lag. Therefore, the AITs reported by different ignition conditions are sometimes significantly different. This study measured the AITs of benzene, toluene and xylene isomers from time lag using AS1M E659-78 apparatus. The experimental ignition delay times were a good agreement with the calculated ignition delay times by the proposed equations wtih a few A.A.D.(average absolute deviation). Also The experimental AITs of benzene, toluene, o-xylene, m-xylene and p-xylene were $583^{\circ}C,\;547^{\circ}C,\;480^{\circ}C,\;587^{\circ}C,\;and\;557^{\circ}C$, respectively.

Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos)

  • Bardalai, Monoj;Mahanta, Dimbendra Kumar
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.180-187
    • /
    • 2016
  • In the present work, bael shell (aegle marmelos) is used as the feedstock for pyrolysis, using a fixed bed reactor to investigate the characteristics of the pyrolysis oil. The product yields, e.g., liquid, char and gases are produced from the biomass at different temperatures with the particle size of 0.5-1.0 mm, at the heating rate of $150^{\circ}C/min$. The maximum liquid yield, i.e., 36.23 wt.%, was found at $5500^{\circ}C$. Some physical properties of the pyrolysis oil such as calorific value, viscosity, density, pH, flash point and fire point are evaluated. The calorific value of the bael shell pyrolysis oil was 20.4 MJ/kg, which is slightly higher than the biomass, i.e., 18.24 MJ/kg. The H/C and O/C ratios of the bio-oil were found as 2.3 and 0.56 respectively, which are quite higher than some other bio-oils. Gas Chromatography and Mass Spectroscopy (GC-MS) and Fourier Transform Infra-red (FTIR) analyses showed that the pyrolysis oil of bael shell is mostly composed by phenolic and acidic compounds. The results of the properties of the bael shell pyrolysis oil reveal the potential of the oil as an alternate fuel with the essential upgradation of some properties.

산림내 산불잠재위험성 평가를 위한 충남지역의 층위별 연소물량 추정 (The estimation on fuel load of forest strata for assessing fire hazard potential in Chungnam forest area)

  • 원명수;윤석희;구교상;이명보;이우균
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2010년도 춘계학술대회
    • /
    • pp.167-169
    • /
    • 2010
  • 본 연구는 산림내 산불잠재위험성 평가를 위해 충남지역을 대상으로 소나무림과 참나무림의 층위별 연소물량의 분포를 추정하기 위함이다. 각 임분의 층위별 연소물량을 파악하기 위해 $10m{\times}10m$ 방형구내의 상층(수고 8m 이상), 중층(8m 이하), 관목층, 지표층(초본, 낙엽, 낙지)을 대상으로 총 36개소를 조사하고 단위면적당(ha) 바이오매스량(연소물량)을 추정하였다. 혼효림의 층위별 연소물량은 소나무림과 참나무림에서 얻어진 결과를 1/2씩 합산하여 추정하였다. 분석결과 충남지역에서 추정된 연소물량은 상층 60~190 ton/ha, 중층 0.5~16 ton/ha, 관목층 0.06~1.9 ton/ha, 초본층 0.04~1.2 ton/ha, 낙엽 1~18 ton/ha, 낙지 0.3~7 ton/ha의 분포를 보이는 것으로 나타났다. 향후 본 연구결과에서 얻어진 층위별 연소물량의 공간분포를 이용하여 산림내 산불잠재위험성을 평가할 계획이다.

  • PDF

버너의 벽면온도와 연소실내 주위공기온도에 따른 매연입자의 열영동 부착 특성에 관한 수치적 연구 (Numerical Study on the Thermophoretic Deposition Characteristics of Soot Particles for Wall Temperature of Burner and Surrounding Air Temperature in Combustion Duct)

  • 최재혁;한원희;윤두호;윤석훈;정석호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.57-65
    • /
    • 2008
  • The characteristics of soot deposition on the cold wall in laminar diffusion flames have been numerically analyzed with a two-dimension with the FDS (Fire Dynamics Simulator). In particular, the effects of surrounding air temperature and wall temperature have been discussed. The fuel for the flame is an ethylene ($C_2H_4$). The surrounding oxygen concentration is 35%. Surrounding air temperatures are 300K, 600K, 900K and 1200K. Wall temperatures are 300K, 600K and 1200K. The soot deposition length defined as the relative approach distance to the wall per a given axial distance is newly introduced as a parameter to evaluate the soot deposition tendency on the wall. The result shows that soot deposition length is increased with increasing the surrounding air temperatures and with decreasing the wall temperature. And the numerical results led to the conclusion that it is essential to consider the thermophoretic effect for understanding the soot deposition on the cold wall properly.

500MW급 아역청탄 전소 보일러의 NOx 배출저감에 미치는 SOFA 영향에 관한 연구 (A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500MW Class Sub-bituminous Coal-Fired Boiler)

  • 강기태;송주헌;윤민지;이병화;김승모;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.858-868
    • /
    • 2009
  • A numerical investigation has been carried out about the performance of a 500MW class tangentially coal-fired boiler, focusing on the optimization of separated overfire air (SOFA) position to reduce NOx emission. For this purpose, a comprehensive combination of NOx chemistry models has been employed in the numerical simulation of a particle-laden flow along with solid fuel combustion and heat and mass transfer. A reasonable agreement has been shown in baseline cases for predicted operational parameters compared with experimental data measured in the boiler. A further SOFA calculation has been made to obtain optimum elevation and position of SOFA port. Additionally, clarifying on the effect of SOFA on NOx emission has been carried out in the coal-fired boiler. As a result, this paper is valuable to provide an information about the optimum position of SOFA and the mechanism by which the SOFA would affect NOx emission.

농촌주택 개량을 위한 난방 효율 시험 (The Experiment on The Efficiency of Heating System for Improving Farm Houses)

  • 이회만;최예환
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3395-3409
    • /
    • 1974
  • The purpose of this study is to test and compare the efficiency of heating-system for materials and construction of the wall, ceiling and window in soil brick house, cement house and boulder house respectively, in order to construct ideal farm houses in rural area. The results obtained were as follows: 1. In heat conservation due to construction of walls the thermal efficiency of cement brick house was equivalent to 66.3% of that of soil brick house, and boulder house 60.3% 2. In the case of ceiling, the thermal efficiency of paper ceiling was amounted to 84.2% of that of the composite ceiling (thickness 6mm veneer+thickness. l0m chaffs), and the common ceiling putting on soil above the ceiling, 76% of the composite while the efficiency of the ceiling putting on chaffs above them was 15.8% higher than that of the paper. 3. In the case of improving the window, the double type was 12% higher than. the efficiency of single type. 4. The warming velocity of conventional house was slower but the velocity of radiation was quicker than that of experimental one. It was thought to be due to unscietific constructions of the room bottom, fire inlet and chimney, 5. The temperature gradient line was not dependad upon the amount of throwing into fuel in the rural farm house. 6. It was concluded that the final thermal efficiency of the conventional farm house was 10.6% lower than that of experimental farm house.

  • PDF