DOI QR코드

DOI QR Code

Flame Instability in Heptane Pool Fires Near Extinction

소화근처 헵탄 풀화재의 화염불안정성

  • Jeong, Tae Hee (Dept. of Safety Engineering, Pukyoung Nat'l Univ.) ;
  • Lee, Eui Ju (Dept. of Safety Engineering, Pukyoung Nat'l Univ.)
  • 정태희 (부경대학교 안전공학과) ;
  • 이의주 (부경대학교 안전공학과)
  • Received : 2012.07.10
  • Accepted : 2012.09.15
  • Published : 2012.12.01

Abstract

A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

액체연료를 사용하는 풀화재에서 화염불안정성에 대하여 산화제 유속변화와 농도변화의 효과를 알아보기 위해 컵버너 실험을 수행하였다. 연료는 헵탄을 사용하였고, 산화제는 공기에 질소와 이산화탄소를 희석하였다. 소화근처에서 축방향 및 화염 밑면에서 두 가지 형태의 대표적인 불안정성이 관찰되었다. 화염 밑면에서 발생되는 불안정성은 셀, 스윙, 회전 모드로 특성화 할 수 있고, 산화제의 유속이 증가할수록 모든 불활성 기체에서 셀, 스윙 모드에서 회전모드로 천이하였다. 이러한 화염밑면 불안정성에 영향을 미치는 변수들을 파악하기 위하여 초기혼합률, Le 수, 단열화염온도에 대해서도 함께 조사되었다. 이 중 Le 수가 불안정성 모드와 가장 큰 상관관계를 보이고 있지만 보다 정확한 관계를 규명하기 위해서는 더 많은 실험조건에서의 결과가 요구된다. 또한, 소화농도근처의 화염에서는 유속이 작거나 큰 경우에는 축방향 주기적인 진동불안정성이 나타나지 않고, 적절한 산화제 속도 영역에서만 관찰된다. 이는 작은 유속에서는 증발하는 연료속도가 임계유속이하이며, 큰 유속에서는 반응중인 연료유속과 산화제 유속이 유사하기 때문으로 판단된다.

Keywords

References

  1. Chamberlin, D. S. and Rose, A., 1928, "The Flicker of Luminous Flames," Industrial Engineering Chemistry, Vol. 20, pp. 1013-1016. https://doi.org/10.1021/ie50226a009
  2. Barr, J., 1953 "Diffusion Flames," 4th Symposium (International) on Combustion, Vol. 4, pp. 765-771. https://doi.org/10.1016/S0082-0784(53)80100-1
  3. Rasbash, D. J., Rogowski, Z. W. and Stark, G. W. V., 1956, "Properties of Fires of Liquids," Fuel, Vol35, pp. 94-107.
  4. Grant, A. J. and Jones, J. M., 1975, "Low Frequency Diffusion Flame Oscillations," Combustion and Flame, Vol. 25, pp. 153-160. https://doi.org/10.1016/0010-2180(75)90081-4
  5. Jeong, T. H. and Lee,E. J., 2012, "The Effects of Velocity and Concentration in the Oxidizer of Heptane Pool Fires on the Flame Stability," Trans. of the KSME (B), Vol. 36, No. 3, pp. 309-314. https://doi.org/10.3795/KSME-B.2012.36.3.309
  6. Katta, V R., Roquemore, W. M., Menon, M., Lee, S. T., Santoro, R. J. and Litzinger, T. A., 2009, "Impact of Soot on Flame Flicker," Proc. Combustion Inst., Vol. 32, pp. 1343-1350. https://doi.org/10.1016/j.proci.2008.06.152
  7. Buckmaster, J., Hegab, A. and Jackson, T. L., 2000, "More Results on Oscillating Edge-Flames," Phys. Fluids, Vol. 12, pp. 1592-1600. https://doi.org/10.1063/1.870406
  8. Buckmaster, J., 2001, "Large-Lewis-Number Instabilities of Model Edge-Flames," Combust. Flame, Vol. 127, pp. 2223-2233. https://doi.org/10.1016/S0010-2180(01)00324-8
  9. Cheamtham, S. and Matalon, M., 1996, "Heat Loss and Lewis Number Effects on the Onset of Oscillation in Diffusion Flames," Proc. Combust. Inst., Vol. 26, pp. 1063-1070. https://doi.org/10.1016/S0082-0784(96)80320-1
  10. Kirkby, L. L., Schmitz, R. A., 1996, "An Analytical Study of the Stability of a Laminar Diffusion Flame," Combust. Flame, Vol. 26, pp. 205-220.
  11. Kurdyumov, V. N. and Matalon, M., 2002, "Radiation Losses as a Driving Mechanism for Flame Oscillations," Proc. Combust. Inst., Vol. 29, pp. 45-52. https://doi.org/10.1016/S1540-7489(02)80010-4
  12. Sivashinsky, G, I., 1977, "Diffusion-Thermal Theory of Cellular Flames," Combust. Sci. Technol., Vol. 15, pp. 137-146. https://doi.org/10.1080/00102207708946779
  13. Kim, J. S., Williams, F. A. and Ronney, P. D., 1996, "Diffusional-Thermal Instability of a Diffusion Flames," Fluid Mech, Vol. 327, pp. 273-301. https://doi.org/10.1017/S0022112096008543
  14. Marc, F., Papas, P. and Monkewitz, P.A., 2000, "Non-Premixed Jet Flame Pulsations near Extinction," Proc. Combustion Inst., Vol 28, pp. 831-838. https://doi.org/10.1016/S0082-0784(00)80287-8
  15. Anon, NFPA 2001, "Standard on Clean Agent Fire Extinguishing System," Proceedings National Fire Protection Agency, Quincy, MA, 2000.
  16. Takahashi, F., Linteris, G. T., Katta, V. R., 2007, "Vortex-coupled Oscillations of Edge Diffusion Flames in Coflowing Air with Dilution," Proc. Combustion Inst., Vol. 31, pp. 1575-1582. https://doi.org/10.1016/j.proci.2006.07.227
  17. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
  18. Kee, R. J. Rupley, F. M. and Miller, J. A., 1989, "Chemkin-II : A Fortran Chemical Kinetics", Sandia Report SAND89-8009B
  19. Lutz, A. E., Rupley, F. M., Kee, R. J. and Reynolds, W. C., 2000, "EQUIL: A Program for Computing Chemical Equilibria," Sandia National Laboratories.
  20. Jacono, D. L., Papas, P. and Monkewitz, P. A., 2003, "Cell Formation in Non-Premixed, Axisymmetric Jet Flames Near Extinction," Combust. Theory Model., Vol. 7, pp. 635-644. https://doi.org/10.1088/1364-7830/7/4/302
  21. Chen, R. H., Chaos, M. and Kothawala, A., 2007, "Lewis Number Effects in Laminar Diffusion Flames Near and Away from Extinction," Proc. Combustion Inst., Vol. 31, pp. 1231-1237. https://doi.org/10.1016/j.proci.2006.07.101
  22. Chaos, M. and Chen, R. H., 2004, "An Experimental Study of Pulsating Instability in Near- Limit Laminar Nonpremixed Flames," Combust. Sci. Thechnol, Vol. 176, pp. 1191-1215. https://doi.org/10.1080/00102200490457394

Cited by

  1. Quantitative Difference in the Extinguishing Concentration of Inert Gases with Fire Suppression Criteria in a Cup Burner Test vol.28, pp.3, 2014, https://doi.org/10.7731/KIFSE.2014.28.3.034