DOI QR코드

DOI QR Code

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application

자동차용 연료전지 냉각계통 열관리 동적 모사

  • Received : 2012.06.08
  • Accepted : 2012.09.20
  • Published : 2012.12.01

Abstract

The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

차량용 연료전지는 내연기관보다 운전 온도가 낮아 냉각수의 온도를 낮게 관리해야 하며, 이러한 냉각수 온도는 대기와의 온도차가 내연기관보다 작아 고성능 방열판 및 열관리계가 요구된다. 이러한 차량용 연료전지 열 관리계는 특히 연료전지 운전 온도 및 스택 내 온도분포를 결정하는 중요한 구성품이다. 본 연구에서는 차량용 연료전지 열 관리계 모델을 Matlab/$Simulink^{(R)}$ 환경 하에 개발하였으며, 기본 설계에 적용이 가능하도록 방열판 상세 모델을 개발하고 열 관리계는 팬, 모터, 방열판 그리고 냉각수 펌프로 구성하였다. 팬과 펌프는 경험식을 이용해 모델을 개발하였으며 모터 동특성을 고려하였다. 두 구성품은 연료전지의 입구와 출구 온도를 추출해 정해진 지령을 수령하도록 제어 하였다. 본 연구에는 연료전지 차량에 적합한 방열기 설계를 위해 방열기 특성을 확인하고, 이를 연료전지 시스템과 통합운전하면서, 연료전지 운전제어에 적절한 지 확인하였다.

Keywords

References

  1. Yu, S. and Jung, D., 2010, "A Study of Operation Strategy of Cooling Module with Dynamic Fuel Cell System Model for Transportation Application," Renewable Energy, Vol. 35, pp. 2525-2532. https://doi.org/10.1016/j.renene.2010.03.023
  2. Pukrushpan, J., Stefanopoulou, A. G. and Peng, H., 2004, Control of Fuel Cell Power Systems, Springer, London, First Edition, pp. 15-20.
  3. Larmine, J., 2002, Fuel Cell System Explained, Wiley, pp. 131-190.
  4. Bernardi, D. M. and Verbrugge, M. W., 1991, "Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte," AIChE Journal, Vol. 37, No. 8, pp. 1151-1163. https://doi.org/10.1002/aic.690370805
  5. Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., 1991, "Polymer Electrolyte Fuel Cell Model," J. of Electrochemical Society, Vol. 138, No. 8, pp. 2334-2342. https://doi.org/10.1149/1.2085971
  6. Amphlett, J., Baumert, R., Mann, R., Peppley, B. and Roberge, P., 1995, "Performance modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell," Journal of Electrochemical Society, Vol. 142, Issue. 1, pp. 1-8. https://doi.org/10.1149/1.2043866
  7. AP, N.S., 1999, "A Simple Engine Cooling System Simulation Model." SAE International. Technical paper, SAE 1999-01-0237.
  8. AP, N.S., Guerrero, P. and Jouanny, P., 2002, "Influence of Front End Vehicle, Fan and Shroud on the Heat Performance of A/C Condenser and Cooling Radiator," SAE International Technical Paper, SAE 2002-01-1206.
  9. Davenport, C. J., 1983, "Heat Transfer and Flow Friction Characteristics of Louvered Heat Exchanger Surfaces in Heat Exchangers," Theory and Practice, pp. 387-412.
  10. Webb, R. L. and Trauger, P., 1991, "Flow Structure in the Louvered Fin Heat Exchanger Geometry," Exp. Thermal and Fluid Sci., Vol. 4, pp. 205-217. https://doi.org/10.1016/0894-1777(91)90065-Y
  11. Sahnoun, A. and Webb, R. L., 1992, "Prediction of Heat Transfer and Friction For Louver Fin Geometry," L. of Heat Transfer, Vol. 114, pp. 893-899. https://doi.org/10.1115/1.2911898
  12. Jung, D. and Assanis, D. N., 2006, "Numerical Modeling of Cross Flow Compact Heat Exchanger with Louvered Fins using Thermal Resistance Concept," SAE International Technical paper, SAE 2006-01-0726.
  13. Malapure,V.P., Mitra, S.K and Bhattacharya, A., 2007, "Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger," International Journal of Thermal Sciences, Vol. 46, pp.199-211. https://doi.org/10.1016/j.ijthermalsci.2006.04.010
  14. Yu, S., Lee, Y. and Ahn, K., 2010, "A System Simulation Model of Proton Exchange Membrane Fuel Cell Residential Power Generation for Thermal Management Study," Trans. of the KSME, Section B, Vol. 34, No.1, pp. 19-26. https://doi.org/10.3795/KSME-B.2010.34.1.19
  15. Mills, A. F., 2003, Basic heat and mass transfer, Pearson, pp. 131-190.
  16. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., 1996, Fundamental of Heat Transfer, Incropera, pp. 420-450.
  17. Chang, Y. and Wang, C., 1997, "A Generalized Heat transfer Correlation for Louver Fin Geometry," int. J. Heat Mass Transfer, Vol. 40, No. 3, pp.533-544. https://doi.org/10.1016/0017-9310(96)00116-0
  18. Yu, S., 2006, "Thermal modeling of the proton exchange membrane fuel cell," ph.D. Dissertation, University of Michigan.
  19. Franklin, G.F., Powell, J.D. and Emami-Naeini, A., 2010, Feedback Control of Dynamic Systems, Pearson, pp. 65-68.

Cited by

  1. Control Algorithm Characteristic Study of Cooling System for Automotive Fuel Cell Application. vol.40, pp.1, 2016, https://doi.org/10.3795/KSME-B.2016.40.1.039