• Title/Summary/Keyword: finite-element numerical modeling

Search Result 772, Processing Time 0.032 seconds

System Identification for Analysis Model Upgrading of FRP Decks (FRP 바닥판의 해석모델개선을 위한 System Identification 기법)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Lee, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.588-593
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Divergence-free algorithms for moment-thrust-curvature analysis of arbitrary sections

  • Chen, Liang;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.557-569
    • /
    • 2017
  • Moment-thrust-curvatures ($M-P-{\Phi}$ curves) are fundamental quantities for detailed descriptions of basic properties such as stiffness and strength of a section under axial loads required for accurate computation of the deformations of reinforced concrete or composite columns. Currently, the finite-element-based methods adopting small fibers for analyzing a section are commonly used for generating the $M-P-{\Phi}$ curves and they require large amounts of computational time and effort. Further, the conventional numerical procedure using the force-control method might encounter divergence problems under high compression or tension. Therefore, this paper proposes a divergence-free approach, combining the use of the displacement-control and the Quasi-Newton scheme in the incremental-iterative procedure, for generating the $M-P-{\Phi}$ curves of arbitrary sections. An efficient method for computing the strength from concrete components is employed, where the stress integration is executed by layer-based algorithms. For easy modeling of residual stress, cross sections of structural steel components are meshed into fibers for strength resultants. The numerical procedure is elaborated in detail with flowcharts. Finally, extensive validating examples from previously published research are given for verifying the accuracy of the proposed method.

Numerical modeling of two-dimensional simulation of groundwater protection from lead using different sorbents in permeable barriers

  • Masood, Zehraa B.;Ali, Ziad Tark Abd
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.605-613
    • /
    • 2020
  • This study is to investigate the possibility of using activated carbon prepared from Iraqi date-pits (ADP) which are produced from palm trees (Phoenix dactylifera L.) as low-cost reactive material in the permeable reactive barrier (PRB) for treating lead (Pb+2) from the contaminated groundwater, and then compare the results experimentally with other common reactive materials such as commercial activated carbon (CAC), zeolite pellets (ZP). Factors influencing sorption such as contact time, initial pH of the solution, sorbent dosage, agitation speed, and initial lead concentration has been studied. Two isotherm models were used for the description of sorption data (Langmuir and Freundlich). The maximum lead sorption capacities were measured for ADP, CAC, and ZP and were found to be 24.5, 12.125, and 4.45 mg/g, respectively. The kinetic data were analyzed using various kinetic models particularly pseudo-first-order, pseudo-second-order, and intraparticle diffusion. COMSOL Multiphysics 3.5a depend on finite element procedure was applied to formulate transmit of lead (Pb+2) in the two-dimensional numerical (2D) model under an equilibrium condition. The numerical solution shows that the contaminant plume is hindered by PRB.

Optimal Stiffness Estimation of Composite Decks Model using System Identification (System Identification 기법을 이용한 복합소재 바닥판 해석모델의 최적강성추정)

  • Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Park, Ki-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.565-570
    • /
    • 2007
  • Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.

  • PDF

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.

Numerical investigation of buckling-restrained steel plate shear wall under fire loading

  • Masoumi-Zahaneh, Fereydoon;Hoseinzadeh, Mohamad;Rahimi, Sepideh;Ebadi-Jamkhaneh, Mehdi
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2022
  • In this study, the seismic behavior of an all-steel buckling-restrained (AB) steel plate shear wall (SPSW) with incline slits under fire and cyclic loading was investigated. ABSPSW was composed of two thin steel infill plates with a narrow distance from each other, which were embedded with incline slits on each plate. These slits were in opposite directions to each other. The finite element (FE) numerical model was validated with three test specimens and after ensuring the modeling strategy, the parametric study was performed by considering variables such as wall plate thickness, slit width, strip width between two slits, and degree of temperature. A total of 256 FE numerical models were subjected to coupled temperature-displacement analysis. The results of the analysis showed that the high temperature reduced the seismic performance of the ABSPSW so that at 917℃, the load-bearing capacity was reduced by 92%. In addition, with the increase in the temperature, the yield point of the infill plate and frame occurred in a small displacement. The average decrease in shear strength at 458℃, 642℃, and 917℃ was 18%, 46%, and 92%, respectively, compared to the shear strength at 20℃. Also, with increasing the temperature to 917℃, ductility increased by an average of 75%

Numerical Analysis of Seepage Induced Earthern Slope Failures (침투가 고려된 토사사면파괴의 수치해석)

  • Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.5-11
    • /
    • 2008
  • Seepage induced earthern slope failures occurs in concert with meteorological events when large quantities of groundwater are channeled into slopes through infiltration. The presence of flowing groundwater in earthern slopes can induce ground failures that result in significant property damage and potential loss of life. Seepage induced earthen slope failures represent a serious problem in geotechnical engineering. This research applies existing fluid-solid numerical modeling capabilities to the study and prediction of seepage induced earthen slope failures. Study of the targeted application holds potential for much needed advances in geotechnical engineering analysis technology which could be used to design more effective engineering slope stabilization interventions.

A Study on Topographic Effects in 2D Resistivity Survey by Numerical and Physical Scale Modeling (수치 및 축소모형실험에 의한 2차원 전기비저항 탐사에서의 지형효과에 관한 연구)

  • Kim Gun-Soo;Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Recently, resistivity surveys have been frequently carried out over the irregular terrain such as mountainous area. Such an irregular terrain itself can produce significant anomalies which may lead to misinterpretations. In this study, topographic effects in resistivity survey were studied using the physical scale modeling as well as the numerical one adopting finite element method. The scale modeling was conducted at a pond, so that we could avoid the edge effect, the inherent problem of the scale modeling conducted in a water tank in laboratory. The modeling experiments for two topographic features, a ridge and a valley with various slope angles, confirmed that the results by the two different modeling techniques coincide with each other fairly well for all the terrain models. These experiments adopting dipole-dipole array showed the distinctive terrain effects, such that a ridge produces a high apparent resistivity anomaly at the ridge center flanked by zones of lower apparent resistivity. On the other hand, a valley produces the opposite anomaly pattern, a central low flanked by highs. As the slope of a terrain model becomes steeper, the terrain-induced anomalies become stronger, and moreover, apparent resistivity can become even negative for the model with extremely high slope angle. All the modeling results led us to the conclusion that terrain effects should be included in the numerical modeling and/or the inversion process to interpret data acquired at the rugged terrain area.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.