• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.032 seconds

Hydrodynamic Modeling for Discharge Analysis in a Dielectric Medium with the Finite Element Method under Lightning Impulse

  • Lee, Ho-Young;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.397-401
    • /
    • 2011
  • The response of lightning impulse voltage was explored in dielectric liquids employing hydrodynamic modeling with three charge carriers using the finite element method. To understand the physical behavior of discharge phenomena in dielectric liquids, the response of step voltage has been extensively studied recently using numerical techniques. That of lightning impulse voltage, however, has rarely been investigated in technical literature. Therefore, in this paper, we tested impulse response with a tip-sphere electrode which is explained in IEC standard #60897 in detail. Electric field-dependent molecular ionization is a common term for the breakdown process, so two ionization factors were tested and compared for selecting a suitable coefficient with the lightning impulse voltage. To stabilize our numerical setup, the artificial diffusion technique was adopted, and finer mesh segmentation was generated along with the axial axis. We found that the velocity from the numerical result agrees with that from the experimental result on lightning impulse breakdown testing in the literature.

Finite Element Analysis on the Motion Accuracy of Hydrostatic Table ($2^{nd}$. Analysis and Experimental Verification on Double Sides Table) (FEM을 이용한 유정압테이블의 운동정밀도 해석 (2. 양면지지형 테이블의 해석 및 실험적 검증))

  • Park, Chun-Hong;Lee, Hu-Sang;Kim, Tae-Hyoung;Kim, Min-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.65-70
    • /
    • 2002
  • An analysis method for calculating motion accuarcy of double sides hydrostatic table is proposed in this paper. In this method, profiles of each rails are assumed as periodic function, therefore it is represented as the sum of spacial frequencies. Bearing clearance at any position rail is depended on the variation of linear, angular motion error of table and the form errors of both sides of a rail. Finite element method is applied to calculate pressure distributions in bearing clearance. In order to simplify the analyzing process, double sides table model is converted into equivalent single side table model. Results calculated by the proposed modeling method agree well with the results directly caculated by double sides modeling method, and also agree well with experimental results. From the theoretical and experimental analysis, it is verified that the proposed analysis method is very effective to analyze the motion accuracy of double sides hydrostatic table.

Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings (유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구)

  • Bae, Gyu-Yeol;Kang, Ki-Cheol;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

Material modeling of steel fiber reinforced concrete

  • Thomee, B.;Schikora, K.;Bletzinger, K.U.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.197-212
    • /
    • 2006
  • Modeling of physically non-linear behavior becomes more and more important for the analysis of SFRC structures in practical applications. From this point of view we will present an effective, three-dimensional constitutive model for SFRC, that is also easy to implement in commercial finite element programs. Additionally, the finite element analysis should only require standard material parameters which can be gained easily from conventional experiments or which are specified in appropriate building codes. Another important point is attaining the material parameters from experimental data. The procedures to determine the material parameters proposed in appropriate codes seem to be only approximations and are unsuitable for precise structural analysis. Therefore a finite element analysis of the test itself is used to get the material parameters. This process is also denoted as inverse analysis. The efficiency of the proposed constitutive model is demonstrated on the basis of numerical examples and their comparison to experimental results. In the framework of material parameter identification the idea of a new, indirect tension testing procedure, the "Modified Tension Test", is adopted and extended to an easy-to-carry-out tension test for steel fiber reinforced concrete specimens.

Low-cycle fatigue in steel H-piles of integral bridges; a comparative study of experimental testing and finite element simulation

  • Karalar, Memduh;Dicleli, Murat
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.35-51
    • /
    • 2020
  • Integral abutment bridges (IABs) are those bridges without expansion joints. A single row of steel H-piles (SHPs) is commonly used at the thin and stub abutments of IABs to form a flexible support system at the bridge ends to accommodate thermal-induced displacement of the bridge. Consequently, as the IAB expands and contracts due to temperature variations, the SHPs supporting the abutments are subjected to cyclic lateral (longitudinal) displacements, which may eventually lead to low-cycle fatigue (LCF) failure of the piles. In this paper, the potential of using finite element (FE) modeling techniques to estimate the LCF life of SHPs commonly used in IABs is investigated. For this purpose, first, experimental tests are conducted on several SHP specimens to determine their LCF life under thermal-induced cyclic flexural strains. In the experimental tests, the specimens are subjected to longitudinal displacements (or flexural strain cycles) with various amplitudes in the absence and presence of a typical axial load. Next, nonlinear FE models of the tested SHP specimens are developed using the computer program ANSYS to investigate the possibility of using such numerical models to predict the LCF life of SHPs commonly used in IABs. The comparison of FE analysis results with the experimental test results revealed that the FE analysis results are in close agreement with the experimental test results. Thus, FE modeling techniques similar to that used in this research study may be used to predict the LCF life of SHP commonly used in IABs.

Study on the Hydromechanical Reverse Redrawing Pprocess Assisted by Separate Radial Pressure (분리된 원주압 보조 액압유도 역 재드로잉공정에 관한 연구)

  • Kim, Bong-Jong;Lee, Dong-U;Yang, Dong-Yeol;Park, Chan-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3728-3740
    • /
    • 1996
  • High-quality cups of deep drawing ratio of more than four cannot be simply drawn by conventional drawing and redrawing processes. In the present study, after the first deep drawing process, subsequent hydromechanical reverse redrawing with controlled radial pressure is employed. In order to increase the deep drawing ratio up to muchmore than four, the radial pressure should be controlled independently of the chamber pressure and thus an optimum forming condition can be found easily by varying the radial pressure. The process has been subjected to finite element analysis by using the rigid-platic material modeling considering all the frictional conditions induced by the hydrostatic pressure. In order to consider the pressure effect on the sheet, the pressure distributions on the flange part and the side wall part are calculated mumerically from simplified Navier-stokes equation. The comparison of the computation with the experiment has shown that the finite element modeling can be conveniently emplyed for the design of the process with reliability from the viewpoint of formability.

Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete

  • Ayatollahi, Majid R.;Pirmohammad, Sadjad;Sedighiani, Karo
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.569-585
    • /
    • 2014
  • In this paper, a four-layer road structure consisting of an edge transverse crack is simulated using three-dimensional finite element method in order to capture the influence of a single-axle wheel load on the crack propagation through the asphalt concrete layer. Different positions of the vehicular load relative to the cracked area are considered in the analyses. Linear elastic fracture mechanics (LEFM) is used for investigating the effect of the traffic load on the behavior of a crack propagating within the asphalt concrete. The results obtained show that the crack front experiences all three modes of deformation i.e., mode I, mode II and mode III, and the corresponding stress intensity factors are highly affected by the crack geometry and the vehicle position. The results also show that for many loading situations, the contribution of shear deformation (due to mode II and mode III loading) is considerable.

Active Vibration Control of Underwater Hull Structure Using Macro-Fiber Composite Actuators (MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어)

  • Kwon, Oh-Cheol;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-145
    • /
    • 2009
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezocomposite actuator named as Macro-Fiber Composite(MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear Quadratic Gaussian(LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

Finite element modeling of concentric-tube continuum robots

  • Baek, Changyeob;Yoon, Kyungho;Kim, Do-Nyun
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.809-821
    • /
    • 2016
  • Concentric-tube continuum robots have formed an active field of research in robotics because of their manipulative exquisiteness essential to facilitate delicate surgical procedures. A set of concentric tubes with designed initial curvatures comprises a robot whose workspace can be controlled by relative translations and rotations of the tubes. Kinematic models have been widely used to predict the movement of the robot, but they are incapable of describing its time-dependent hysteretic behaviors accurately particularly when snapping occurs. To overcome this limitation, here we present a finite element modeling approach to investigating the dynamics of concentric-tube continuum robots. In our model, each tube is discretized using MITC shell elements and its transient responses are computed implicitly using the Bathe time integration method. Inter-tube contacts, the key actuation mechanism of this robot, are modeled using the constraint function method with contact damping to capture the hysteresis in robot trajectories. Performance of the proposed method is demonstrated by analyzing three specifications of two-tube robots including the one exhibiting snapping phenomena while the method can be applied to multiple-tube robots as well.

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M.;Alkarni, A.;Noorzaei, J.;Paknahad, M.;Jaafar, M.S.;Huat, B.B.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.17-34
    • /
    • 2011
  • This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.