DOI QR코드

DOI QR Code

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M. (Civil Engineering Faculty, Universiti Putra Malaysia) ;
  • Alkarni, A. (Civil Engineering Faculty, King Saud University) ;
  • Noorzaei, J. (Civil Engineering Faculty, Universiti Putra Malaysia) ;
  • Paknahad, M. (Civil Engineering Faculty, Universiti Putra Malaysia) ;
  • Jaafar, M.S. (Civil Engineering Faculty, Universiti Putra Malaysia) ;
  • Huat, B.B.K. (Civil Engineering Faculty, Universiti Putra Malaysia)
  • Received : 2010.09.13
  • Accepted : 2011.01.26
  • Published : 2011.03.25

Abstract

This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.

Keywords

Acknowledgement

Supported by : King Saud University

References

  1. Badie, S. and Salmon, D. (1996), "A quadratic order elastic foundation finite element", Comput. Struct., 58(3), 435-443. https://doi.org/10.1016/0045-7949(95)00175-G
  2. Badie, S. and Salmon, D. (1997), "Three-noded curved isoparametric soil interface element", Comput. Struct., 65(2), 205-212. https://doi.org/10.1016/S0045-7949(96)00331-8
  3. Badie, S., Salmon, D. and Beshara, A. (1997), "Analysis of shear wall structures on elastic foundations", Comput. Struct., 65(2), 213-224. https://doi.org/10.1016/S0045-7949(96)00332-X
  4. Bergan, C. (1985), "A triangular membrane element with rotational degrees of freedom", Comput. Method. Appl. M., 50(1), 25-69. https://doi.org/10.1016/0045-7825(85)90113-6
  5. Boroschek, R. and Yáñez, F. (2000), "Experimental verification of basic analytical assumptions used in the analysis of structural wall buildings", Eng. Struct., 22(6), 657-669. https://doi.org/10.1016/S0141-0296(99)00007-3
  6. Chore, H., Ingle, R. and Sawant, V. (2009), "Building frame-pile foundation-soil interactive analysis", Interact. Multiscale Mech., 2(4), 397-411. https://doi.org/10.12989/imm.2009.2.4.397
  7. Chore, H., Ingle, R. and Sawant, V. (2010a), "Building frame-pile foundation-soil interaction analysis: a parametric study", Interact. Multiscale Mech., 3(1), 55-79. https://doi.org/10.12989/imm.2010.3.1.055
  8. Chore, H., Ingle, R. and Sawant, V. (2010b), "Parametric study of pile groups subjected to lateral load", Struct. Eng. Mech., 36(2), 243-246. https://doi.org/10.12989/sem.2010.36.2.243
  9. Dutta, S. and Roy, R. (2002), "A critical review on idealization and modeling for interaction among soilfoundation-structure system", Comput. Struct., 80(20-21), 1579-1594. https://doi.org/10.1016/S0045-7949(02)00115-3
  10. Felippa, C. and Alexander, S. (1992), "Membrane triangles with corner drilling freedoms - III. Implementation and performance evaluation", Finite Elem. Anal. Des., 12(3-4), 203-239. https://doi.org/10.1016/0168-874X(92)90035-B
  11. Felippa, C. and Militello, C. (1992), "Membrane triangles with corner drilling freedoms - II. The ANDES element", Finite Elem. Anal. Des., 12(3-4), 189-201. https://doi.org/10.1016/0168-874X(92)90034-A
  12. Felippa, C. (1996), "Refined finite element analysis of linear and nonlinear two-dimensional structures", Structures and Materials Research, Dept. of Civil Engineering, Univ. of Calif., Berkeley, Report, 66-22.
  13. Felippa, C. (2003), "A study of optimal membrane triangles with drilling freedoms", Comput. Method. Appl. M., 192(16-18), 2125-2168. https://doi.org/10.1016/S0045-7825(03)00253-6
  14. Kim, H. and Lee, D. (2003), "Analysis of shear wall with openings using super elements", Eng. Struct., 25(8), 981-991. https://doi.org/10.1016/S0141-0296(03)00041-5
  15. Nadjai, A. and Johnson, D. (1998), "Elastic and elasto-plastic analysis of planar coupled shear walls with flexible bases", Comput. Struct., 68(1-3), 213-229. https://doi.org/10.1016/S0045-7949(98)00036-4
  16. Noorzaei, J., Alkarni, A., Jaafar, M.S. and Dalili, M. (2010), "Modelling of soil structure interaction in framed and shear wall structures", The First International Conference on Advances in Interaction and Multiscale Mechanics, Jeju, Korea.
  17. Paknahad, M., Noorzaei, J., Jaafar, M. and Thanoon, W. (2007), "Analysis of shear wall structure using optimal membrane triangle element", Finite Elem. Anal. Des., 43(11-12), 861-869. https://doi.org/10.1016/j.finel.2007.05.010
  18. Paknahad, M. (2008), Development of finite element codes for shear wall analysis, Ph.D Thesis, Civil Engineering, Universiti Putra Malaysia.
  19. Paknahad, M., Noorzaei, J., Jaafar, M. S. and Thanoon, W.A.M. (2009), "Nonlinear analysis of shear wall system with Super element", Struct. Eng., 36(5), 319-326.
  20. Pandey, A.K., Kumar, G. and Shamra, S.P. (1994), "An interactive approach for the soil-structure interaction in tall buildings", Eng. Fract. Mech., 41(2), 169-176.
  21. Park, K. and Stanley, G. (1986), "A curved $C^{\circ}$ shell element based on assumed natural-coordinate strains", J. Appl. Mech., 53, 278-290. https://doi.org/10.1115/1.3171752
  22. Viladkar, M., Godbole, P. and Noorzaei, J. (1991), "Soil-structure interaction in plane frames using coupled finite-infinite elements", Comput. Struct., 39(5), 535-546. https://doi.org/10.1016/0045-7949(91)90062-Q
  23. Viladkar, M., Godbole, P. and Noorzaei, J. (1992a), "Space frame-raft-soil interaction including effect of slab stiffness", Comput. Struct., 43(1), 93-106. https://doi.org/10.1016/0045-7949(92)90083-C
  24. Viladkar, M., Sharma, R. and Ranjan, G. (1992b), "Visco-elastic finite element formulation for isolated foundations on clays", Comput. Struct., 43(2), 313-324. https://doi.org/10.1016/0045-7949(92)90148-S
  25. Viladkar, M., Godbole, P. and Noorzaei, J. (1994a), "Modelling of interface for soil-structure interaction studies", Comput. Struct., 52(4), 765-779. https://doi.org/10.1016/0045-7949(94)90358-1
  26. Viladkar, M., Noorzaei, J. and Godbole, P. (1994b), "Behaviour of infinite elements in an elasto-plastic domain", Comput. Struct., 51(4), 337-342. https://doi.org/10.1016/0045-7949(94)90319-0

Cited by

  1. Interaction analysis of a building frame suppoted on pile groups vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.511
  2. Soil-Structure Interaction of Space Frame Supported on Pile Foundation Embedded in Cohesionless Soil vol.46, pp.4, 2016, https://doi.org/10.1007/s40098-016-0188-4
  3. Interactive analysis of a building fame resting on pile foundation vol.6, pp.4, 2013, https://doi.org/10.12989/imm.2013.6.4.377
  4. Interaction of Building Frame with Pile Foundation vol.06, pp.02, 2016, https://doi.org/10.4236/ojce.2016.62018
  5. Non linear soil structure interaction of space frame-pile foundation-soil system vol.49, pp.1, 2014, https://doi.org/10.12989/sem.2014.49.1.095
  6. Interaction analysis of a building frame supported on pile groups vol.3, pp.3, 2014, https://doi.org/10.12989/csm.2014.3.3.305
  7. Soil -structure interaction analysis of a building frame supported on piled raft vol.5, pp.1, 2016, https://doi.org/10.12989/csm.2016.5.1.041
  8. Interactive analysis of a building fame resting on pile foundation vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.367
  9. Review of static soil-framed structure interaction vol.6, pp.1, 2011, https://doi.org/10.12989/imm.2013.6.1.051
  10. Interaction analysis of three storeyed building frame supported on pile foundation vol.7, pp.4, 2011, https://doi.org/10.12989/csm.2018.7.4.455
  11. Experimental investigation of axially loaded group of piles with and without building frame: a parametric study vol.4, pp.1, 2019, https://doi.org/10.1007/s41062-019-0222-3
  12. Finite Element Modeling of Soil Structure Interaction System with Interface: A Review vol.28, pp.5, 2011, https://doi.org/10.1007/s11831-020-09505-2