• Title/Summary/Keyword: finite-element modeling

Search Result 2,200, Processing Time 0.032 seconds

Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation

  • Thang, Vo Viet;Kim, In-Sung;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.671-676
    • /
    • 2011
  • A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and $20^{\circ}C$ temperature rise from room temperature under 115 V driving voltage, 100 ${\Omega}$ matching load, $28{\times}28{\times}1.8mm$ size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.

The Evaluation of the Structural Integrity of Bellows Globe Valve for Nuclear Power (원자력 발전소용 벨로우즈 글로브 밸브에 대한 구조 건전성 평가)

  • Chung, Chul-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1034-1039
    • /
    • 2006
  • The purpose of this paper is to evaluate the structural integrity of the Class 1500 Bellows Seal 3 inch globe valve classified as seismic category IIA. The finite element analysis program, ANSYS, Version 10.0, is used to perform both a modal frequency analysis and an equivalent static stress analysis of the subject valve modeling. The modal frequency analysis results show the fundamental natural frequency is greater than 33 Hz. Therefore the equivalent static stress analysis is performed using the seismic acceleration values. The stresses resulted from various loadings and their combinations are evaluated based on the structural acceptance criteria of the ASME Code. The stresses in the glove valve due to the seismic loadings are within the allowable limits. It is concluded that the globe valve structure is maintaining the structural integrity fur the seismic loading conditions.

  • PDF

A Study on Dynamic Analysis of Vertical Mixed-Flow Pump for Nuclear Power Plants (원자력 발전소용 입형 사류펌프의 동적해석에 관한 연구)

  • Seo, Y.S.;Lim, W.S.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.71-77
    • /
    • 2006
  • This study introduces the seismic qualification of safety related equipments for nuclear power plants to verify the possibility of resonance in regard to the operating speed and the structural integrity due to external piping nozzle loads as well as seismic dynamic loads using El-Centro earthquake, which was occurred in the 1940's previously. As a first step, it is necessary to investigate the natural frequency of the vertical mixed flow pump in order to determine whether static or dynamic equipment comparing with seismic cut-off frequency, 33hz. Also the normal mode analysis was carried out with the introduction of seismic redesign straint at the middle of vertical pump to increase the natural frequency. In terms of structural integrity, the application of static analysis with normal, upset and faulted nozzle loads event was presented for the comparison of material allowable stress. Also the dynamic analysis was performed to show the design adequacy through the application to the case of El-Centro earthquake.

  • PDF

ExLO: Development of a Three-Dimensional Hydrocode (ExLO:3차원 유체동역학 프로그램의 개발)

  • Chung, W.J.;Lee, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.235-237
    • /
    • 2008
  • A unified hydrocode, ExLO, in which Largrangian, ALE and Eulerian solvers are incorporated into a single framework, has recently been developed in Korea. It is based on the three dimensional explicit finite element method and written in C++. ExLO is mainly designed for the calculation of structural responses to highly transient loading conditions, such as high-speed impacts, high-speed machining, high speed forming and explosions. In this paper the numerical schemes are described. Some improvements of the material interface and advection scheme are included. Details and issues of the momentum advection scheme are provided. In this paper the modeling capability of ExLO has been described for two extreme loading events; high-speed impacts and explosions. Numerical predictions are in good agreement with the existing experimental data. Specific applications of the code are discussed in a separate paper in this journal. Eventually ExLO will be providing an optimum simulation environment to engineering problems including the fluid-structure interaction problems, since it allows regions of a problem to be modeled with Lagrangian, ALE or Eulerian schemes in a single framework.

  • PDF

Calculation of Film Diffusion Coefficients and Surface Diffusion Coefficients of Volatile Organic Compounds Using Activated Carbon Adsorption Model and Small Column Test (활성탄 흡착모델과 칼럼실험을 통한 Volatile Organic Compounds의 막확산계수와 표면확산계수의 도출)

  • Lee, Byoung-Ho;Lee, Joon-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.72-80
    • /
    • 1999
  • Separation of VOCs(Volatile Organic Compounds) in Water Using Activated Carbon is known to be effective. Activated Carbon has been and will be employed in many water treatment plants. Simplified plug flow homogeneous surface diffusion model(PFHSDM) has been used to predict adsorption of organic matter. Finite Element Method(FEM) was used to analyze the model. Out of water quality control substances, benzene, toluene and tetrachloroethylene were used in the small column test. Film diffusion coefficients and surface diffusion coefficients were obtained from the column test, and were compared with the modeling results. Mc Cune, Williamson, William and Kataoka model, were compared with film diffusion coefficients obtained in the test. McCune model was fitted best for those VOCs used in this experiment. Film diffusion coefficients of VOCs obtained were benzene 0.265 cm/min, toluene 0.348 cm/min and tetrachloroethylene 0.298 cm/min. Surface diffusion coefficients of VOCs obtained were benzene $6.36{\times}10^{-8}cm^2/min$, toluene $3.20{\times}10-8cm2/min$, and tetrachloruethylene $4.94{\times}10^{-8}cm^2/min$.

  • PDF

Multi-Stage Forming Analysis of a Milli-Component for Improvement of Forming Accuracy (밀리부품의 정밀도 향상을 위한 다단계 성형 및 금형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Na, G.H.;Park, H.J.;Choi, T.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.429-434
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components need more precise manufacturing process than the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable for accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component

Response Characters of Bridge Adopting StLRB (StLRB 지진격리장치를 적용한 교량의 거동특성과 비교분석)

  • Choi, Seung-Ho;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.139-146
    • /
    • 2004
  • In this paper, the seismic analysis and the modeling techniques have been introduced for seismic performances assessment, when seismic isolation bearings are applied to a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. El Centro earthquake(1940, N00W) used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

Effect of progressive shear punch of a foundation on a reinforced concrete building behavior

  • Naghipour, Morteza;Niak, Kia Moghaddas;Shariati, Mahdi;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.279-294
    • /
    • 2020
  • Foundation of a building is damaged under service loads during construction. First visit shows that the foundation has been punched at the 6 column's foot region led to building rotation. Foundation shear punching occurring has made some stresses and deflections in construction. In this study, progressing of damage caused by foundation shear punching and inverse loading in order to resolve the building rotation has been evaluated in the foundation and frame of building by finite element modeling in ABAQUS software. The stress values of bars in punched regions of foundation has been deeply exceeded from steel yielding strength and experienced large displacement based on software's results. On the other hand, the values of created stresses in the frame are not too big to make serious damage. In the beams and columns of ground floor, some partial cracks has been occurred and in other floors, the values of stresses are in the elastic zone of materials. Finally, by inverse loading to the frame, the horizontal displacement of floors has been resolved and the values of stresses in frame has been significantly reduced.

Development of Blade on 9㎥ Class of Mixer Drum (9㎥급 믹서드럼 블레이드의 개발)

  • Shin, H.G.;Choi, H.C.;Bean, D.H.;Kim, Y.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2011
  • The concrete mixer truck which is in charge of raw materials in civil engineering construction of the concrete loading, transport, placement, is used $6m^3$, $7m^3$ class in domestic(Korea). But in the case of the international construction fields are utilized $9m^3$ or above class because of the large-scale engineering and construction circumstances. In this paper, to develop a large $9m^3$ class mixer drum and the mixer drum in order to complement the technical and discharge that is responsible for stirring the blades by applying optimal design through implementation of the optimal shape of the concrete in the drum maintenance and placement of high-quality effects on increasing discharge such as advanced conventional drum mixer is to secure and differentiated technology. Large, heavy weight in development and uphold the drum mixer vehicle sub-frame is required to settle the design of the existing class mixer drum frames per $6m^3$ changed to account for changes in slope and length using CATIA V5 3D modeling work was performed.

A novel low-profile flow sensor for monitoring of hemodynamics in cerebral aneurysm

  • Chen, Yanfei;Jankowitz, Brian T.;Cho, Sung Kwon;Yeo, Woon-Hong;Chun, Youngjae
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.71-84
    • /
    • 2015
  • A low-profile flow sensor has been designed, fabricated, and characterized to demonstrate the feasibility for monitoring hemodynamics in cerebral aneurysm. The prototype device is composed of three micro-membranes ($500-{\mu}m$-thick polyurethane film with $6-{\mu}m$-thick layers of nitinol above and below). A novel super-hydrophilic surface treatment offers excellent hemocompatibility for the thin nitinol electrode. A computational study of the deformable mechanics optimizes the design of the flow sensor and the analysis of computational fluid dynamics estimates the flow and pressure profiles within the simulated aneurysm sac. Experimental studies demonstrate the feasibility of the device to monitor intra-aneurysmal hemodynamics in a blood vessel. The mechanical compression test shows the linear relationship between the applied force and the measured capacitance change. Analytical calculation of the resonant frequency shift due to the compression force agrees well with the experimental results. The results have the potential to address important unmet needs in wireless monitoring of intra-aneurysm hemodynamic quiescence.