• Title/Summary/Keyword: finite-Element Method

Search Result 13,458, Processing Time 0.033 seconds

Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture (골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용)

  • Chung, Woo-Yang;Eckelman, Carl A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF

Strain-smoothed polygonal finite elements

  • Hoontae Jung;Chaemin Lee;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.311-324
    • /
    • 2023
  • Herein, we present effective polygonal finite elements to which the strain-smoothed element (SSE) method is applied. Recently, the SSE method has been developed for conventional triangular and quadrilateral finite elements; furthermore, it has been shown to improve the performance of finite elements. Polygonal elements enable various applications through flexible mesh handling; however, further development is still required to use them more effectively in engineering practice. In this study, piecewise linear shape functions are adopted, the SSE method is applied through the triangulation of polygonal elements, and a smoothed strain field is constructed within the element. The strain-smoothed polygonal elements pass basic tests and show improved convergence behaviors in various numerical problems.

An Implicit Unstructured Finite Element Method for Diffraction of Water Waves by Two-Dimensional Floating Breakwaters (부유체 주위의 2차원 회절 문제를 위한 내율적 비정렬 격자 유한요소해법)

  • 정구창
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.90-101
    • /
    • 1997
  • A hybrid element method is presented for two-dimensional diffraction problem of water waves. In this method, only a limited fluid domain close to irregular bodies is discretized into conventional finite elements, while the remaining infinite domain is treated as one element with analytical representations of high accuracy. A finite element grid is automatically generated by using Dealunay triangulation based on the Bowyer's algorithm and a linear system of equations is approximately solved with the ILU-CGS algorithm. To validate the present scheme, Computational results are compared with the existing experimental data and other numerical solutions.

  • PDF

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method (3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측)

  • Jung, K.H.;Kim, D.K.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration (2차원 동적 진동문제의 공간-시간 유한요소법 적용)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.143-149
    • /
    • 2006
  • This paper deals with the space-time finite element analysis of two-dimensional vibration problem with a single variable. The method of space-time finite elements enables the simpler solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period. The weighted residual process is used to formulate a finite element method for a space-time domain. A stability problem is described and some investigations for chosen type of rectangular space-time finite elements are carried out. Instability is caused by a too large time step of successive time steps in the traditional time-dependent problems. It has been shown that the numerical stability of time-stepping on the larger time steps is quite good. The unstructured space-time finite element not only overcomes the shortcomings of the stability in the traditional numerical methods, but it is also endowed with the features of an effective computational technique. Some numerical examples have been presented to illustrate the efficiency of the described method.

Modelling Technique and Model Analysis of Submerged Structures Using Finite Element Method and Boundary Element Method (유한요소법과 경계요소법을 이용한 수중에서의 탄성구조물의 진동모드해석 및 모델링 기법)

  • 김관주;오상륜
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.319-324
    • /
    • 2000
  • This paper shows hot to model the submerged elastic structures and adequate analysis tools for modal behavior when using finite element and boundary element method. Four different cases are reviewed depending on the location of the water and air. First case is that structures are filled with air and water is located outside. Second case is opposite to case one. These cases are solved by direct approach using collocation procedure. Third case is that water is located both sides of structures. Last case is that air is located both sides. These cases are solved by indirect approach using variational procedure. As analysis tools harmonic frequency sweep analysis and eigenvalue iteration method are selected to obtain the natural frequencies of vibrating submerged structures depending on the cases. Results are compared with closed form solutions of submerged spherical shell.

  • PDF

A Comparative study of Finite Element Method and Boundary Element Method Analysis result of Cantilever Beam model by applying Orthotropic Material Properties (직교 이방성 재료 물성이 적용된 cantilever beam 형상의 FEM과 BEM에 의한 해석 결과에 대한 비교 연구)

  • Kim, Dong-Eun;Hwang, Young-Jin;Lee, Seok-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.730-735
    • /
    • 2007
  • This study is a comparison of the results of the orthropic material analysis at cantilever beam model using boundary element(BEM) method and finite element method(FEM). The program with the orthotropic material analysis was developed and applied to the examples in order to evaluate the accuracy of the programs. The examples shows that the results of the BEM is a good agreement with the ABAQUS results.

  • PDF

Calculation of Cavity Flow with FEM & Finite Spectral Method

  • Wang Jian-Ping;Li Ting-Wen
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.131-133
    • /
    • 2003
  • The streamfunction-vorticity equations for two-dimentional cavity flow are solved by a new finite element method which uses finite spectral basis functions as interpolation functions for rectangular elements. Results for several cases with different Renold's number are compared with benchmark solutions and found to be in well agreement.

  • PDF

A Study of 3-Dimension Plate- Elastic Foundation Interaction Analysis by Finite Element Method (판과 탄성지반의 상호작용을 고려한 3차원 유한요소해석에 관한 연구)

  • 황창규;강재순
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 1992
  • This paper is a basic study of three by finite element method. Plate and medium. Plate is discretized 4 node p melt. At the interface between plate a melt is adopted for considering plate Measured vertical displacement out by plate foundation interaction finite zion is followed as ; 1. as being interface element adopts dation interaction finite element 2. As being interface element and platefoundation interaction finite 3. As being interface element adopte Therefore, post processing that as.

  • PDF