An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration

2차원 동적 진동문제의 공간-시간 유한요소법 적용

  • Kim, Chi-Kyung (Department of Safety Engineering, University of Incheon)
  • 김치경 (인천대학교 안전공학과)
  • Published : 2006.04.30

Abstract

This paper deals with the space-time finite element analysis of two-dimensional vibration problem with a single variable. The method of space-time finite elements enables the simpler solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period. The weighted residual process is used to formulate a finite element method for a space-time domain. A stability problem is described and some investigations for chosen type of rectangular space-time finite elements are carried out. Instability is caused by a too large time step of successive time steps in the traditional time-dependent problems. It has been shown that the numerical stability of time-stepping on the larger time steps is quite good. The unstructured space-time finite element not only overcomes the shortcomings of the stability in the traditional numerical methods, but it is also endowed with the features of an effective computational technique. Some numerical examples have been presented to illustrate the efficiency of the described method.

본 논문은 2차원 동적 진동문제를 공간-시간 유한요소법으로 해석하고 있다. 공간-시간 유한요소법은 공간만 분할하는 재래식 유한요소해석에 비해 보다 해를 빠르고 쉽게 얻을 수 있다. 상대적으로 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 공간-시간 유한요소 근사법을 제시한다. 가중잔차법으로 공간-시간 영역에 대해 유한요소법을 정식화하였으며 선형 사변형 공간-시간 유한요소를 선택하여 해의 안정성에 관하여 언급하였다. 일반적 동적문제에서는 상대적인 큰 시간간격으로 인하여 해의 불안정을 야기 시키고 있으나 본 연구에서는 수치의 안정성을 보여주고 있다. 비구조 공간-시간 유한요소법은 재래식 수치해석에서 흔히 발생하는 해의 불안정성에 대한 결점을 보완함은 물론 효과적인 계산방법을 지니고 있다. 이 방법의 효율성을 위해 수치예제들을 제시하였다.

Keywords

References

  1. Bajer, C. I., Triangular and tetrahedral space-time finite elements in vibration analysis, International Journal for Numerical Methods in Engineering, Vol. 23, pp. 2031-2048, 1986 https://doi.org/10.1002/nme.1620231105
  2. Shakib, F. and Hughes, T.J.R., A new finite element formulation for computational fluid dynamics: Ix. Fourier analysis of space-time Galerkin/Least-squares algorithms, Computer Methods in Applied Mechanics and Engineering, Vol. 66, pp. 35-58, 1991
  3. Bruch, J. C. and Zyvoloski, G., A finite element weighted residual solution to one-dimensional field problems, International Journal for Numerical Methods in Engineering, Vol. 8, pp. 481-494, 1974 https://doi.org/10.1002/nme.1620080304
  4. Kim, C.K., On the Numerical Computation for Solving the Two-Dimensional Parabolic Equations By Space and Time Finite Element Method, JSME International Journal Series B, Vol. 44, pp. 434- 438, 2001 https://doi.org/10.1299/jsmeb.44.434
  5. Saitoh, T.S. et al., Time-space method for multidimensional melting and freezing problems, International Journal for Numerical Methods in Engineering, Vol. 37, pp. 1793-1805, 1994 https://doi.org/10.1002/nme.1620371102
  6. Argyris, J. H. and Scharpf, D.W., Finite element in time and space, Nuclear Engineering and Design, Vol. 10, pp. 456-460, 1989 https://doi.org/10.1016/0029-5493(69)90081-8
  7. Axelsson, O. and Maubach, J., A time-space finite element discretization technique for the calculation of the electromagnetic field in ferromagnetic materials, International Journal for Numerical Methods in Engineering, Vol. 28, pp. 2085-2111, 1989 https://doi.org/10.1002/nme.1620280908
  8. Hughes, T. J. R. and Hulbert, G. W., Space-time finite element methods for elastodynamics formulations and error estimates, Computer Methods in Applied Mechanics and Engineering, Vol. 66, pp. 339-363, 1987
  9. Yu, L. R. and Hsu, T. R., Analysis of heat conduction in solids by space-time finite element method, International Journal for Numerical Methods in Engineering, 21, pp. 2001-2012, 1985 https://doi.org/10.1002/nme.1620211105
  10. Kaczkowski, Z., The method of finite space-time elements in dynamics of structures, Journal of Technical Physics, Vol. 16, pp. 69-84, 1975