• 제목/요약/키워드: finite-Element Method

검색결과 13,396건 처리시간 0.034초

전달강성계수법과 유한요소법의 조합에 의한 사각평판의 자유진동해석 (Free Vibration Analysis of Rectangular Plates by the Combined Transfer Stiffness Coefficient Method and Finite Element Method)

  • 문덕홍;최명수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.353-358
    • /
    • 1998
  • In general, we have used the finite element method(FEM) to find natural frequencies of plates. In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for finding natural frequencies of plates correctly. Therefore it was very difficult to analyze the free vibration of plates correctly on personal computer. For overcoming this disadvantage of the FEM, the authors have developed the finite element-transfer stiffness coefficient method(FE-TSCM) which is based on the concept of modeling techniques in the FEM and the transfer of the stiffness coefficient in the transfer stiffness coefficient method. In this paper, we formulate free vibration analysis algorithm of rectangular plates using the FE-TSCM. Some numerical examples of rectangular plates are proposed, and their results and computation times obtained by the FE-TSCM are compared with those by the FEM and the finite element-transfer matrix method in order to demonstrate the accuracy and efficiency of the FE-TSCM.

  • PDF

유한요소-전달행렬의 혼합물을 이용한 3차원 구조물의 진동해석 (Vibration Analysis of 3-Dimensional Structure by using Mixed Method of Finite Element-Transfer Matrix)

  • 이동명
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.16-22
    • /
    • 2001
  • In this study for reduction degree of freedom of dynamic model, a mixed method to combined finite element method and transfer matrix method is presented. This offers the advantages of an automatic reduction in the size of the eigenvalues problem and of a straightforward means of dynamic substructuring. The analytical procedure in this method for dynamic analysis of 3-dimensional cantilevered box beam are described. the result of numerical example is shown to demonstate the efficiency and accuracy of this method. The result form this example agree well those obtained by ANSYS, By using this technique, the number of nodes required in the regular finite element method is reduced and therefore a smaller com-puter can be used.

  • PDF

움직임을 고려한 전기기기의 유한요소기법에 관한 연구 (A study on Moving Surface Method to Consider a Motion of Electrical Machine with Finite Element Method)

  • 원성홍;임승빈;배재남;김명진;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.589-595
    • /
    • 2006
  • As one of numerical methods, the Finite Element Method (FEM) is very widely used to analyze electrical machines these days. However, the most electrical machines have a motion and it is very important to consider a motion in electrical machine analysis. In this paper, Moving Surface Method is suggested as a new approach to consider a motion and discuss its advantages and disadvantages. And also, a finite element analysis program which applied Moving Surface Method is developed and we evaluate its results compared with experimental results of a real model.

사면안정해석에 있어서의 유한요소법과 한계평형법의 비교 (Comparative study between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis)

  • 이동엽;유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.483-490
    • /
    • 2002
  • This paper presents the results of a comparative study between FEM and LEM on slope stability analysis. For validation, factors of safety were compared between FEM and LEM. The results from the two methods were in good agreement suggesting that the FEM with the shear strength reduction method can be effectively used on slope stability analyses. A series of analysis were then performed using the FEM for various constitutive laws, slope angles, flow rules, and the finite element discretizations. Among the findings, the finite element method in conjunction with the shear strength reduction method can provide reasonable results in terms of factor of safety. Also revealed is that the results of FEM can be significantly affected by the way in which the type of constitutive law and flow rule are selected.

  • PDF

유한요소 교호법을 이용한 무한 물체에 존재하는 임의 형상의 삼차원 균열 해석 (Analysis of Arbitrarily Shaped Three Dimensional Cracks in an Infinite Body Using the FEAM)

  • 김태순;박재학;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.278-283
    • /
    • 2004
  • Many analysis methods, including finite element method, have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrarily shaped three dimensional cracks in an infinite body, the finite element alternating method is extended. The cracks are modeled as a distribution of displacement discontinuities by the displacement discontinuity method and the symmetric Galerkin boundary element method. Applied the proposed method to several example problems for planner cracks in finite bodies, the accuracy and efficiency of the method were demonstrated.

  • PDF

Investigation of Strain Measurements using Digital Image Correlation with a Finite Element Method

  • Zhao, Jian;Zhao, Dong
    • Journal of the Optical Society of Korea
    • /
    • 제17권5호
    • /
    • pp.399-404
    • /
    • 2013
  • This article proposes a digital image correlation (DIC) strain measurement method based on a finite element (FE) algorithm. A two-step digital image correlation is presented. In the first step, the gradient-based subpixels technique is used to search the displacements of a region of interest of the specimen, and then the strain fields are obtained by utilizing the finite element method in the second step. Both simulation and experiment processing, including tensile strain deformation, show that the proposed method can achieve nearly the same accuracy as the cubic spline interpolation method in most cases and higher accuracy in some cases, such as the simulations of uniaxial tension with and without noise. The results show that it also has a good noise-robustness. Finally, this method is used in the uniaxial tensile testing for Dahurian Larch wood specimens with or without a hole, and the obtained strain values are close to the results which were obtained from the strain gauge and the cubic spline interpolation method.

공동주택의 바닥충격진동 저감을 위한 유한요소법 및 다구찌법의 활용 (Application of Finite Element Method and Taguchi Method to Reduce Floor Impact Vibration in Apartment Buildings)

  • 서상호;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.385-388
    • /
    • 2005
  • Finite element method and Taguchi method were used to reduce the floor impact vibration of the reinforced concrete slab in the apartment buildings. At first, experimental results show that sound peak components to influence the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab, and there is a high linear relation between floor impact vibration and sound. The tables of orthogonal arrays were used for finite element analysis with 5 factors related to slab shape parameters and its results were analyzed by statistical method. The most effective factor to reduce the floor impact vibration was the length of living/kitchen room and the floor impact vibration was predicted by 30% reduction in the acceleration peak by the optimal design values of the factors.

  • PDF

A Study on the Stochastic Finite Element Method for Dynamic Problem of Nonlinear Continuum

  • Wang, Qing;Bae, Dong-Myung
    • Journal of Ship and Ocean Technology
    • /
    • 제12권2호
    • /
    • pp.1-15
    • /
    • 2008
  • The main idea of this paper introduce stochastic structural parameters and random dynamic excitation directly into the dynamic functional variational formulations, and developed the nonlinear dynamic analysis of a stochastic variational principle and the corresponding stochastic finite element method via the weighted residual method and the small parameter perturbation technique. An interpolation method was adopted, which is based on representing the random field in terms of an interpolation rule involving a set of deterministic shape functions. Direct integration Wilson-${\theta}$ Method was adopted to solve finite element equations. Numerical examples are compared with Monte-Carlo simulation method to show that the approaches proposed herein are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석 (Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method)

  • 안동규;정동원;양동열;이장희
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.