• Title/Summary/Keyword: finite-Element Method

Search Result 13,396, Processing Time 0.04 seconds

Multi-scale Analysis of Thin film Considering Surface Effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Jung, Kwang-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.287-292
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6{\sim}10^9$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

Stress Distribution on Construction Joint of Prestressed Concrete bridge Members with Tendon Couplers (텐던커플러를 사용한 프리스트레스트 콘크리트 교량부재의 이음부 응력분포 특성)

  • 오병환;채성태;김병석;이만섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, prestressed concrete(PSC) bridge structures with many repetitive spans have been widely constructed using the segmental construction method in many countries. In these segmentally constructed PSC bridges, there exist many construction joints which is required coupling of tendons or overlapping of tendons to introduce continuous prestress through several spans of bridges. The purpose of this paper is to investigate in detail the complicated stress distributions around the tendon coupled joints in prestressed concrete girders. To this end, a comprehensive experimental program has been set up and a series of specimens have been tested to identify the effects of tendon coupling. The present study indicates that the longitudinal and transverse stress distributions of PSC girders with tendon couplers are quite different from those of PSC girders without tendon couplers. It is seen that the longitudinal compressive stresses introduced by prestressing are greatly reduced around coupled joints according to tendon coupling ratios. The large reduction of compressive stresses around the coupled joints may cause deleterious cracking problems in PSC girder bridges due to tensile stresses arising from live loads, shrinkage and temperature effects. The analysis results by finite element method correlate very well with test results observed complex strain distributions of tendon coupled members. It is expected that the results of this paper will provide a good basis for realistic design guideline around tendon coupled joints in PSC girder bridges.

An Experimental Study on the Flexural Behavior of the Round Concrete Panels according to the Evaluation Method of Biaxial Flexural Tensile Strengths (휨인장강도 평가 방법에 따른 콘크리트 원형패널의 휨거동에 관한 실험적 연구)

  • Kim, Ji-Hwan;Zi, Goang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • In this study, we conducted experiment and finite element analysis on the flexural behavior of the round concrete panels according to the evaluation method of biaxial flexural tensile strengths. The Round Panel Test (RPT) and the Biaxial Flexure Test (BFT) were used to determine the biaxial flexural strength of round plain concrete panels. In order to understand the stress distribution on the panels, we measured load-strain relationship at the center of the panels' bottom surface. Test results show that fracture pattern in RPT and BFT panels are similar, and the tensile stress distribution is uniform in all directions at the center of the bottom surface of the panels for both RPT and BFT. The distribution of stresses in two test specimens coincided with the analysis result. The average biaxial flexural strength of RPT is about 29% greater than those of the BFT. The coefficient of variations (COV) of the RPT and BFT for the biaxial flexure strength is 8%, 6%, respectively, which indicates that BFT method is useful and reliable for determining biaxial flexural strengths of the concrete.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements

  • Yi, Jin-Hak;Cho, Soojin;Koo, Ki-Young;Yun, Chung-Bang;Kim, Jeong-Tae;Lee, Chang-Geun;Lee, Won-Tae
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.281-298
    • /
    • 2007
  • The load carrying capacity of a bridge needs to be properly assessed to operate the bridge safely and maintain it efficiently. For the evaluation of load carrying capacity considering the current state of a bridge, static and quasi-static loading tests with weight-controlled heavy trucks have been conventionally utilized. In these tests, the deflection (or strain) of the structural members loaded by the controlled vehicles are measured and analyzed. Using the measured data, deflection (or strain) correction factor and impact correction factor are calculated. These correction factors are used in the enhancement of the load carrying capacity of a bridge, reflecting the real state of a bridge. However, full or partial control of the traffic during the tests and difficulties during the installment of displacement transducers or strain gauges may cause not only inconvenience to the traffic but also the increase of the logistics cost and time. To overcome these difficulties, an alternative method is proposed using an excited response part of full measured ambient acceleration data by ordinary traffic on a bridge without traffic control. Based on the modal properties extracted from the ambient vibration data, the initial finite element (FE) model of a bridge can be updated to represent the current real state of a bridge. Using the updated FE model, the deflection of a bridge akin to the real value can be easily obtained without measuring the real deflection. Impact factors are obtained from pseudo-deflection, which is obtained by double-integration of the acceleration data with removal of the linear components on the acceleration data. For validation, a series of tests were carried out on a steel plategirder bridge of an expressway in Korea in four different seasons, and the evaluated load carrying capacities of the bridge by the proposed method are compared with the result obtained by the conventional load test method.

Development of Equations for Dynamic Design Loads of Sphere Type LNG Tank with Cylindrical Extension (원통 확장부를 갖는 구형 LNG 탱크의 동적 설계하중 산출식 개발)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.262-267
    • /
    • 2017
  • The number of shops needed for the fabrication of a sphere type cargo tank for an LNG carrier is proportional to the size of the tank to be constructed. Due to the limitations of facility investment, it is difficult to fabricate various size tanks with a perfectly spherical shape in the (factory). An efficient method of increasing the capacity of the cargo tank is to extend the conventional sphere type LNG tank vertically by inserting a cylindrical shell structure. In this study, equations for the dynamic pressure distribution due to horizontal acceleration are derived for a sphere type LNG tank with central extension. The derived equations can be easily applied to the design and structural assessment of a sphere type LNG tank with central extension. Furthermore, the results of this study can be combined with the static design loads previously reported by Shin & Ko [9], in order to establish a simplified analysis method which enables a precise initial estimate to be obtained, thereby obviating the need for a time consuming finite element analysis.

Behavior of Overlaid Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 이용한 덧씌우기 된 콘크리트 도로 포장의 다축차륜하중에 대한 거동 분석)

  • An, Zu-Og;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.63-76
    • /
    • 2007
  • The transformed field domain analysis method was developed in this study to investigate the aspects of the stress distribution in overlaid concrete pavement systems under multi-axle vehicle loads. The overlay was assumed to be perfectly bonded or perfectly unbonded to the existing concrete pavement. The loads considered included the dual tired single-axle, tandem-axle, and tridem-axle loads, and the effects of the overlay's thickness, elastic modulus, and Poisson's ratio on the stress distribution were investigated. Details of the analysis method in the transformed field domain to analyze the overlaid pavement was described in this paper and the analysis results were verified by comparing with those obtained using the finite element method. From the analysis, it was found that the maximum tensile stress in the existing slab decreased as the overlay's thickness, elastic modulus, and Poisson's ratio increased, and the bonded overlay showed more significant effects than the unbonded one. The overlay's Poisson's ratio did not much affect the stresses, and the features of the maximum stress reduction in the existing slab due to the increase of the thickness, elastic modulus, and Poisson's ratio of the overlay were investigated. The effects of the number of axles on the stress distribution and the maximum stress were also investigated.

  • PDF

A Study on the Parameters of Design for Warpage reduction of Passive components Embedded Substrate for PoP (PoP용 패시브 소자 임베디드 기판의 warpage 감소를 위한 파라메타 설계에 관한 연구)

  • Cho, Seunghyun;Kim, Dohan;Oh, Youngjin;Lee, Jongtae;Cha, Sangsuk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • In this paper, numerical analysis by finite element method and parameter design by the Taguchi method were used to reduce warpage of a two passive components embedded double side substrate for PoP(Package on Package). The effect of thickness of circuit layers (L1, L2) and thickness of solder resist (SR_top, SR_BTM) were analyzed with 4 variations and 3 levels(minimum, average and maximum thickness) to find optimized thickness conditions. Also, paste effect of solder resist on unit area of top surface was analyzed. Finally, experiments was carried out to prove numerical analysis and the Taguchi method. Based on the numerical and experimental results, it was known that circuit layer in ball side of substrate was the most severe determining deviation for reducing warpage. Buried circuit layer in chip side, solder resist and were insignificant effects on warpage relatively. However, warpage decreased as circuit layer in ball side thickness increased but effect of solder resist and circuit layer in chip side thickness were conversely.

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

A Study on Unstable Phenomenon of Space Truss Structures Considering Initial Imperfection (트러스형 공간구조물의 초기 불완전을 고려한 불안정 현상에 관한 연구)

  • Lee, Jin-Hyouk;Baik, Tai-Soon;Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.63-71
    • /
    • 2004
  • The structural space is gradually wide and is wanting agreeable environment by the requirement and necessity of people who lives modem stage. The building coincides with such requirements and is the high rise building actual circumstances which is doing ultra-large. The confirmed report of the technology to organize great merit is becoming currently considerably important issue in constructing a building field. Thus, this paper examine closely for nonlinear unstable taking a picture uneasiness height of prosperity considering to initial imperfection by a numerical method with a space frame structure of discrete system in large space structure. Based on previous investigation method, this paper induce nodal stiffness matrix of solid truss elements considering geometrical nonlinear using finite element method. In this paper, three types of space structure considered; i) 1-free node space structure, ii) 2-free node space structure, iii) multi-free node space structure. It apply the above examples to a nonlinear program, next, grasp the characteristic of an unstable conduct and the result was a clearing low.

  • PDF