• 제목/요약/키워드: finite spectral method

검색결과 148건 처리시간 0.026초

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • 제17권2호
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

진동 특성을 고려한 자동차 냉각모듈 방진고무의 내구성 평가 (Evaluation for Fatigue Life of Rubber Isolator for Vibration Characteristic on Automotive Cooling Module)

  • 심희진;김한철;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.350-355
    • /
    • 2008
  • A Rubber mount is widely used for mechanical parts or engineering materials. Especially, it plays an important role in reducing mechanical vibration due to cyclic loading. But, rubber mount is damaged due to the cyclic loading and resonance. Therefore, it is necessary to investigate evaluation of fatigue life considering vibration characteristics for rubber. In this study, a vibration fatigue analysis was performed and based on Power Spectral Density(PSD) and the stress-life curve and a result of frequency response analysis in the finite element method. The measured load history in experiment was transformed to PSD curve. The stress-life curve was obtained by nonlinear static analysis and fatigue test. In addition, frequency response analysis was conducted for mechanical part. In order to evaluate fatigue life of rubber mount, vibration fatigue test was conducted at the constant acceleration-level as well. Fatigue life was determined when the load capacity is reduced to 60% of its initial value. As a result, predicted fatigue life of rubber mount agreed fairly well with the experimental fatigue life.

  • PDF

회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석 (Analysis of the Magnetic Force and Torque of a Rotatory Two-phase Transverse Flux Machine)

  • 박남기;장정환;장건희
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.33-40
    • /
    • 2007
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced nitration due to its inherent structure. This Paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

  • Kim, Yooil;Kim, Min-Suk;Park, Myong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.178-201
    • /
    • 2019
  • The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

취송류 재현을 위한 3차원 스펙트랄모형 개발 (A Three-dimensional Spectral Model for the Computation of Wind-induced Flows in a Homogeneous Shelf Sea)

  • 소재귀;정경태;이광수;승영호
    • 한국해안해양공학회지
    • /
    • 제4권2호
    • /
    • pp.91-107
    • /
    • 1992
  • Heaps(1972)가 사용한 천해균질류에 대한 선형 기본방정식을 수심평균류속과 해수면변리를 계산하는 External mode와 수심변이 유속을 계산하는 Internal mode로 분리시킨 다음, Internal mode식에 Galerkin Method를 적용하였다. Internal mode유속을 수평좌표, 시간에 따라 변하는 계수와 대직좌표에 따라 변하는 Basis function들의 곱의 형태로 선형전개하며, 난류확산계수를 포함하는 2차미분항으로부터 해수면에 Homogeneous boundary condition과 해저면에 Sheared boundary condition이 가해지는 Sturm-Liouville system을 구성, Eigenfunctions 해를 구하여 Basis function으로 사용하였다. 모델의 성능을 검토하기 위하여 수립된 모델을 정상균일풍이 가해지는 1차원 수노에 적용하여 Cooper and Pearce(1977)가 제시한 해저면 비활동조건하의 무한 및 유한수노 연직류원분포에 대한 해석각와 비교하였으며, North Sea 규모의 등수심 장방형 Basin(Heaps' Basin)에 적용하여 정상균일풍에 대한 Heaps(1972)의 계산결과와 비교하였다.

  • PDF

비행조건에 따른 항공기 배기플룸의 IR 신호 특성 (Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume)

  • 고건영;김만영;백승욱
    • 한국추진공학회지
    • /
    • 제16권5호
    • /
    • pp.58-66
    • /
    • 2012
  • 기술 수준에 의해 그 우위가 결정되는 현대 전장에서 항공기 플룸과 복사저부가열은 항공기의 생존성에 관련된 중요한 요인이다. 항공기의 생존성을 향상시키기 위해서는 저부가열, 그리고 항공기 플룸으로부터 방사되는 IR 신호가 감소되어야 한다. 본 연구에서는 IR 신호와 복사저부가열 특성을 고도 5km에서 마하수 0.9와 1.6의 조건으로 설정하여 플룸 내 유동 및 열복사 특성을 고찰하였다. 이를 통해 플룸에서의 IR 신호는 $H_2O$$CO_2$의 영향으로 인한 높은 방사특성을 확인하였다. 그리고 마하수가 높고 거리가 가까울수록 저부면에서의 복사열유속이 증가됨을 확인하였다.

비행조건에 따른 항공기 배기플룸의 IR 신호 특성 (Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume)

  • 고건영;김만영;백승욱
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.282-289
    • /
    • 2012
  • 기술 수준에 의해 그 우위가 결정되는 현대 전장에서 항공기 플룸과 복사저부가열은 항공기의 생존성에 관련된 중요한 요인이다. 항공기의 생존성을 향상시키기 위해서는 저부가열, 그리고 항공기 플룸으로부터 방사되는 IR 신호가 감소되어야 한다. 본 연구에서는 IR 신호와 복사저부가열 특성을 고도 5km에서 마하수 0.9와 1.6의 조건으로 설정하여 플룸 내 유동 및 열복사 특성을 고찰하였다. 이를 통해 플룸에서의 IR 신호는 $H_2O$$CO_2$의 영향으로 인한 높은 방사특성을 확인하였다. 그리고 마하수가 높고 거리가 가까울수록 저부면에서의 복사열유속은 증가하였다.

  • PDF

Analysis on Design and Fabrication of High-diffraction-efficiency Multilayer Dielectric Gratings

  • Cho, Hyun-Ju;Lee, Kwang-Hyun;Kim, Sang-In;Lee, Jung-Hwan;Kim, Hyun-Tae;Kim, Won-Sik;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Seoyoung;Kim, Tae Young;Hwangbo, Chang Kwon
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.125-133
    • /
    • 2018
  • We report an in-depth analysis of the design and fabrication of multilayer dielectric (MLD) diffraction gratings for spectral beam combining at a wavelength of 1055 nm. The design involves a near-Littrow grating and a modal analysis for high diffraction efficiency. A range of wavelengths, grating periods, and angles of incidence were examined for the near-Littrow grating, for the $0^{th}$ and $-1^{st}$ diffraction orders only. A modal method was then used to investigate the effect of the duty cycle on the effective indices of the grating modes, and the depth of the grating was determined for only the $-1^{st}$-order diffraction. The design parameters of the grating and the matching layer thickness between grating and MLD reflector were refined for high diffraction efficiency, using the finite-difference time-domain (FDTD) method. A high reflector was deposited by electron-beam evaporation, and a grating structure was fabricated by photolithography and reactive-ion etching. The diffraction efficiency and laser-induced damage threshold of the fabricated MLD diffraction gratings were measured, and the diffraction efficiency was compared with the design's value.

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.