• Title/Summary/Keyword: finite presentation

Search Result 36, Processing Time 0.029 seconds

The Characteristic Analysis and Design of Transformer for LCD Backlight Inverter (LCD 구동 Backlight Inverter용 변압기의 설계 방법과 특성 분석)

  • Kim, Youn-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.353-361
    • /
    • 2006
  • This paper presents the design scheme of transformer for backlight inverter and discuss the characteristics related to its design, including driving inverter. A few studies have so far been made at design and characteristics analysis of transformer. Therefore, this paper manages the presentation of the advisable design methodology of transformer for backlight inverter supplying CCFL. To verify the proposed method, this paper accomplishes the analysis by FEM coupled with circuit and finally shows that the proposed design method is very useful.

A study on the Development of Structural Analysis Program using Visual Basic (Visual Basic을 이용한 구조해석 프로그램 개발에 관한 연구)

  • 이상갑;장승조
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-222
    • /
    • 1995
  • The objective of this paper is to develop a finite element structural analysis program using VB(Visual Basic) which has been recently getting popular as development tools of application program for Windows. VB provides several functions to develop an application program easily by supporting event-driven programming method and graphic object as control data type. This system is an integrated processor including preprocessor, solver and postprocessor. Automatic mesh generation is available at preprocess stage, and graphic presentation of deformation and stress is also represented at postprocess one.

  • PDF

Transformations of Partial Matchings

  • Nakamura, Inasa
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.409-439
    • /
    • 2021
  • We consider partial matchings, which are finite graphs consisting of edges and vertices of degree zero or one. We consider transformations between two states of partial matchings. We introduce a method of presenting a transformation between partial matchings. We introduce the notion of the lattice presentation of a partial matching, and the lattice polytope associated with a pair of lattice presentations, and we investigate transformations with minimal area.

COMBINATORIAL WEBS OF QUANTUM LIE SUPERALGEBRA sl(1|1)

  • Kim, Dong-Seok
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.469-479
    • /
    • 2009
  • Temperley-Lieb algebras had been generalized to web spaces for rank 2 simple Lie algebras which led us to link invariants for these Lie algebras as a generalization of Jones polynomial. Recently, Geer found a new generalization of Jones polynomial for some Lie superalgebras. In this paper, we study the quantum sl(1|1) representation theory using the web space and find a finite presentation of the representation category (for generic q) of the quantum sl(1|1).

A Study of Localization with Al7075 By Using Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 알루미늄 7075합금강의 국부화 현상에 대한 연구)

  • 이병섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.9-12
    • /
    • 2000
  • The importance of the role of plastic spin in the rate-dependent response of materials at large deformations is the main objective of this work. After a brief presentation of a general consitutive framework for visco-rigid plasticity at large strains an isotropic/kinematic hardening and a visco-rigid plastic model are used to analyze the stress-strain response under simple shear. A clear understanding of the role of plastic spin is achieved by obtaining numerical analyzed results for different stress values in which the plastic spin consititutive parameters interrelaste with the strain rate and other more conventional model constants, Especially this paper is concerned with introducing behaviors of Al7075

  • PDF

Exact calculation of natural frequencies of repetitive structures

  • Williams, F.W.;Kennedy, D.;Wu, Gaofeng;Zhou, Jianqing
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.553-568
    • /
    • 1996
  • Finite element stiffness matrix methods are presented for finding natural frequencies (or buckling loads) and modes of repetitive structures. The usual approximate finite element formulations are included, but more relevantly they also permit the use of 'exact finite elements', which account for distributed mass exactly by solving appropriate differential equations. A transcendental eigenvalue problem results, for which all the natural frequencies are found with certainty. The calculations are performed for a single repeating portion of a rotationally or linearly (in one, two or three directions) repetitive structure. The emphasis is on rotational periodicity, for which principal advantages include: any repeating portions can be connected together, not just adjacent ones; nodes can lie on, and members along, the axis of rotational periodicity; complex arithmetic is used for brevity of presentation and speed of computation; two types of rotationally periodic substructures can be used in a multi-level manner; multi-level non-periodic substructuring is permitted within the repeating portions of parent rotationally periodic structures or substructures and; all the substructuring is exact, i.e., the same answers are obtained whether or not substructuring is used. Numerical results are given for a rotationally periodic structure by using exact finite elements and two levels of rotationally periodic substructures. The solution time is about 500 times faster than if none of the rotational periodicity had been used. The solution time would have been about ten times faster still if the software used had included all the substructuring features presented.

Behavior of piled rafts overlying a tunnel in sandy soil

  • Al-Omari, Raid R.;Al-Azzawi, Adel A.;AlAbbas, Kadhim A.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.599-615
    • /
    • 2016
  • The present research presents experimental and finite element studies to investigate the behavior of piled raft-tunnel system in a sandy soil. In the experimental work, a small scale model was tested in a sand box with load applied vertically to the raft through a hydraulic jack. Five configurations of piles were tested in the laboratory. The effects of pile length (L), number of piles in the group and the clearance distance between pile tip and top of tunnel surface (H) on the load carrying capacity of the piled raft-tunnel system are investigated. The load sharing percent between piles and rafts are included in the load-settlement presentation. The experimental work on piled raft-tunnel system yielded that all piles in the group carry the same fraction of load. The load carrying capacity of the piled raft-tunnel model was increased with increasing (L) for variable (H) distances and decreased with increasing (H) for constant pile lengths. The total load carrying capacity of the piled raft-tunnel model decreases with decreasing number of piles in the group. The total load carrying capacity of the piles relative to the total applied load (piles share) increases with increasing (L) and the number of piles in the group. The increase in (L/H) ratio for variable (H) distance and number of piles leads to an increase in piles share. ANSYS finite element program is used to model and analyze the piled raft-tunnel system. A three dimensional analysis with elastoplastic soil model is carried out. The obtained results revealed that the finite element method and the experimental modeling are rationally agreed.

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

Stress analysis of non carious cervical lesion and cervical composite resin restoration (지상강좌 1 - 비우식성 치경부병소와 치경부 복합레진수복의 응력분석)

  • Park, Jeong-Kil
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.297-307
    • /
    • 2010
  • Noncarious cervical lesions(NCCLs) are characterized as structural defects found on the tooth surface of the cement-enamel junction. Loss of tooth structure through noncarious mechanisms may vary in etiology and clinical presentation for each individual but presently many clinician now classify this as tooth failure of abfraction due to the stress applied in the cervical area of the tooth under oral physiological and pathological loads. In the current study, we investigated the stress distribution of maxillary premolar with NCCL using simulated 3D finite element analysis. The results were as follows: 1. In the sound maxillary premolar, the stresses were highly concentrated at cervical enamel surface of the mesiobuccal line angle, asymmetrically. 2. Once the lesion has been formed, the highest stress concentration was observed around the apex of the wedge shaped lesion. 3. In four types of NCCL, the patterns of stress distribution were similar and the peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 4. Lesion cavity modification of rounding apex, reduced stress of lesion apex. 5. When restoring the notch-shaped lesion, material with high elastic modulus worked well at the lesion apex and material with low elastic modulus worked well at the cervical cavosurface margin.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF