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COMBINATORIAL WEBS OF QUANTUM LIE

SUPERALGEBRA sl(1|1)

Dongseok Kim

Abstract. Temperley-Lieb algebras had been generalized to web spaces
for rank 2 simple Lie algebras which led us to link invariants for these Lie
algebras as a generalization of Jones polynomial. Recently, Geer found
a new generalization of Jones polynomial for some Lie superalgebras. In

this paper, we study the quantum sl(1|1) representation theory using the
web space and find a finite presentation of the representation category
(for generic q) of the quantum sl(1|1).

1. Introduction

After the historical invention of Jones polynomial [7,8], it brought a Renais-
sance of the study of knots and links [3,10,22]. To generalize Jones polynomial
there are three important ways to produce the quantum link invariants. First
one can use the quantum Yang-Baxter equation: using a solution of the Quan-
tum Yang-Baxter equation, R-matrix, one can obtain the link invariant as a
trace of a representation of the braid into a tensor power from a presentation
of a link by a closed braid [2,3]. From the original work of N. Reshetikhin and
V. Turaev one can construct of a functor from a monoidal category C-colored
framed tangles to C where C is a ribbon category, the image of framed links
lands in the coefficient ring C[q1/2, q−1/2] [9, 17,18]. The last is the main topic
of the present article that we find link invariants using skein expansion of cross-
ing together with a geometric counterpart for the invariants vectors which is
called webs and their presentation using the representation theory of quantum
algebras [1, 11–16,19].

Recently, Geer found a new generalization of Jones polynomial for some Lie
superalgebras [4–6]. The Lie superalgebra sl(1|1) is the simplest special linear
Lie superalgebra. As a start of the research on the presentation of the rep-
resentation category of quantum superalgebras, we study the quantum sl(1|1)
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representation theory using the web space and find a finite presentation of the
representation category Mod(sl(1|1))q for generic q in the following theorem.

Theorem 1.1. The representation category generated by vertices

,

that satisfy the relations

= = 0 (1)

= [2] (2)

= (3)

= + [2] (4)

= [2] + [2] (5)

+ [3] = + [3] (6)

is isomorphic to Mod(sl(1|1))q after completion with projectors.

The outline of this paper is as follows. In section 2, we review the represen-
tation theory of the quantum Lie algebras. In section 3, we develop the repre-
sentation theory of the quantum sl(1|1). In section 4 we prove Theorem 1.1.
In section 5, we discuss further research problems on the representation theory
of the quantum sl(1|1).

2. Preliminaries

The Kauffman bracket polynomial can be defined by these two skein relations
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= q
1

4 + q−
1

4

together with

= −[2] = −
q
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2 − q−
2

2

q
1

2 − q−
1

2

= −q
1

2 − q−
1

2 .

The specialized HOMFLY polynomials Pn can be calculated as

Pn(∅) = 1,

Pn( ∪ D) = (
q

n

2 − q−
n

2

q
1

2 − q−
1

2

)Pn(D),

q
n

2 Pn(L+) − q−
n

2 Pn(L−) = (q
1

2 − q−
1

2 )Pn(L0),

where ∅ is the empty diagram, is the trivial knot and L+, L− and L0 are
skein triple.

L+ L− L0

The HOMFLY polynomial of links can be recovered from the representation
theory of the quantum sl(n). For n = 1 and for any link, P1(q) = 1. For
n = 2, P2(q) is the Jones polynomial [8, 17, 18, 22]. The polynomial Pn(q) can
be computed by linearly expanding each crossing into a sum of diagrams of
planar trivalent graphs where the edges of these planar graphs are oriented
and colored by 1 or 2 [15].
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2.1. The quantum representation category of Lie algebras

Let g be a complex simple Lie algebra. Let Mod(g)q be the category of
finite-dimensional representations over Q(q) of the quantum group Uq(g), which
deform representations of U(g). Then Mod(g)q is well-known to be a ribbon
category. In particular, it is a pivotal category. This means that any planar
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graph has a well-defined scalar value, provided that each edge is labeled with
a representation of Uq(g) and each vertex is labeled with an invariant vector.

For g = sl(2), there is a well-known presentation of its representation cate-
gory as a pivotal category, the Temperley-Lieb category. In this presentation,
there is a single unoriented edge type V1, the fundamental representation, and
at first there are no vertices. Therefore the only possible “word” in this pre-
sentation is a set of curves properly embedded in a disk. We assume the sole
relation

= −[2] = −
q

2

2 − q−
2

2

q
1

2 − q−
1

2

= −q
1

2 − q−
1

2 .

This relation implies that the invariant space Inv(V ⊗n
1 ), or the skein space

of a disk with n marked boundary points, has a basis, the set of crossingless
matchings, or chord diagrams. Strictly speaking, this is not all of Mod(g)q, but
only the subcategory supported on the objects V ⊗n

1 . However, we can model
any other irreducible representation Vn by the highest-weight projection

c : V ⊗n
1 → V ⊗n

1

whose image is Vn. Expressed combinatorially in the Temperley-Lieb category,
this projection is called a Jones-Wenzl projector, or more simply a clasp.

The Temperley-Lieb category can be completed to all of Mod(sl(2))q using
clasps. A recursive formula for a clasp of weight n is

n

n

=

n − 1

n − 1

+
[n − 1]

[n]

n − 1

n − 2

n − 1

.

Its properties are

n
n

n = n n (idempotent),

n
k

n − k − 2
= 0 (annihilation axiom).

Kuperberg found generalizations of this presentation to rank 2 Lie algebras,
sl(3), sp(4) and G2, called “spiders” [13]. Words in the generating edges and
vertices are then called webs. For sl(3), an example of the webs with a boundary
(+ − + −−−−) is
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−

−

+

− +

−

−

.

The main property of a spider presentation is that the relations are confluent.
Confluence means that the relations have the following two properties:

(1) Each relation has a single leading term which is the most complicated
with respect to a natural partial ordering.

(2) If the relations are applied to simplify webs, they can be made to com-
mute by applying further simplifying relations.

2.2. Lie superalgebras

Formally, a Lie superalgebra is a (nonassociative) Z2-graded algebra, or su-
peralgebra, over a commutative ring (typically R or C) whose product [·, ·]s,
called the Lie superbracket or supercommutator, satisfies the two conditions
(analogs of the usual Lie algebra axioms, with grading):

(1) Super skew-symmetry:

[x, y]s = −(−1)|x||y|[y, x]s,

(2) The super Jacobi identity:

(−1)|z||x|[x, [y, z]s]s + (−1)|x||y|[y, [z, x]s]s + (−1)|y||z|[z, [x, y]s]s = 0

where x, y, and z are pure in the Z2-grading. Here, |x| denotes the degree
of x (either 0 or 1).

3. The representation theory of the quantum Lie superalgebra

sl(1|1)

sl(1|1) is a Lie superalgebra with basis E,N,X, Y where deg(E) = deg(N) =
0, deg(X) = deg(Y ) = 1 and relations

[N,X]s = X, [N,Y ]s = −Y, [X,Y ]s = E,

[E,N ]s = [E,X]s = [E, Y ]s = 0.

We consider one dimensional representation 1n spanned by υn, deg(υn) = 0
with sl(1|1) acting by

Eυn = Xυn = Y υn = 0, Nυ = nυ.
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We also consider two dimensional representation 2e,n spanned by υ
e,n
0 , υ

e,n
1

and the action of sl(1|1) by

Eυ
e,n
0 = eυ

e,n
0 , Nυ

e,n
0 = nυ

e,n
0 , Xυ

e,n
0 = 0, Y υ

e,n
0 = eυ

e,n
1 ,

Eυ
e,n
1 = eυ

e,n
1 , Nυ

e,n
1 = (n − 1)υe,n

0 , Xυ
e,n
1 = υ

e,n
0 , Y υ

e,n
1 = 0.

The R-matrix is an intertwiner for any pair of representations V,W :

R : V ⊗ W −→ W ⊗ V,

which is a signed permutation

R(x ⊗ y) = (−1)deg(x)deg(y)y ⊗ x.

Then it clearly holds the Yang-Baxter equation

R2 = Id, R1R2R1 = R2R1R2.

The tensor product 2e1,n1
⊗ 2e2,n2

contains two dimensional subrepresen-
tations 2e1+e2,n1+n2

and 2e1+e2,n1+n2
spanned by υ

e1,n1

0 ⊗ υ
e2,n2

0 , e2υ
e1,n1

0 ⊗
υ

e2,n2

1 + e1υ
e1,n1

1 ⊗ υ
e2,n2

0 , and υ
e1,n1

0 ⊗ υ
e2,n2

1 − υ
e1,n1

1 ⊗ υ
e2,n2

0 , υ
e1,n1

1 ⊗ υ
e2,n2

1 .
If e1 + e2 6= 0, these representations 2e1+e2,n1+n2

, 2e1+e2,n1+n2
intersect

trivially. Consequently, as a sl(1|1) module, 2e1,n1
⊗ 2e2,n2

can be decomposed
into

2e1,n1
⊗ 2e2,n2

∼= 2e1+e2,n1+n2
⊕ 2e1+e2,n1+n2

.

Let π+ be the intertwiner

π+ : 2e,n ⊗ 2e,n −→ 22e,2n

define by

π+(υe,n
0 ⊗ υ

e,n
0 ) = υ

2e,2n
0 ,

π+(υe,n
1 ⊗ υ

e,n
0 ) = υ

2e,2n
1 ,

π+(υe,n
0 ⊗ υ

e,n
1 ) = υ

2e,2n
1 , π+(υe,n

1 ⊗ υ
e,n
1 ) = 0.

Let ι+ be the intertwiner

ι+ : 22e,2n −→ 2e,n ⊗ 2e,n

define by

ι+(υ2e,2n
0 ) = 2υe,n

0 ⊗ υ
e,n
0 ,

ι+(υ2e,2n
1 ) = υ

e,n
0 ⊗ υ

e,n
1 + υ

e,n
1 ⊗ υ

e,n
0 .

Then, the composition π+ ◦ ι+ is the zero intertwiner.
Let us specialize to the tensor product of representations 2e,n and 2−e,1−n

where e 6= 0.
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Define intertwiners

δ+ : 10 −→ 2e,n ⊗ 2−e,1−n,

ε+ : 2e,n ⊗ 2−e,1−n −→ 10,

δ− : 10 −→ 2−e,1−n ⊗ 2e,n,

ε− : 2−e,1−n ⊗ 2e,n −→ 10,

by

δ+(υ0) = υ
e,n
1 ⊗ υ

−e,1−n
0 − υ

e,n
0 ⊗ υ

−e,1−n
1 ,

δ−(υ0) = υ
e,n
1 ⊗ υ

−e,1−n
0 − υ

e,n
0 ⊗ υ

−e,1−n
1 ,

ε+(υe,n
0 ⊗ υ

−e,1−n
0 ) = 0,

ε+(υe,n
1 ⊗ υ

−e,1−n
0 ) = υ0,

ε+(υe,n
0 ⊗ υ

−e,1−n
1 ) = υ0,

ε+(υe,n
1 ⊗ υ

−e,1−n
1 ) = 0,

ε−(υe,n
0 ⊗ υ

−e,1−n
0 ) = 0,

ε−(υe,n
1 ⊗ υ

−e,1−n
0 ) = −υ0,

ε−(υe,n
0 ⊗ υ

−e,1−n
1 ) = υ0,

ε−(υe,n
1 ⊗ υ

−e,1−n
1 ) = 0.

For a diagrammatic description, we use a directed blue line for 2e,n, a di-
rected blue line of opposite direction for 2−e,1−n, a directed think red line for
22e,2n and a directed thick red line of opposite direction for 2−2e,1−2n. Then

δ+ : δ− : ,

ε+ : ε− : ,

π+ : ι+ : .

The following equation about the R-matrix,

R = π+ ◦ ι+ − Id,

can be depicted as

= − .
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4. Presentation

Now, we are set to prove Theorem 1.1. First, the equation (1) follows from
the quantum trace of each representation. To prove other equations, we set

= a

= b

= c + d

= e + f

= g + h + i

+ j + k + l .

For the presentation of the representation category of the quantum Lie al-
gebras, we can easily solve a and b using the following consistency relation.

= b = a

However, due to the equation (1) we can not find a, b from these equations.
Thus we set a = [2] and b = 1 by scaling generating vertices which are compa-
rable to Viro’s [21]. We consider the following consistency relation.
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= [2] = [2]

= d

= 12 = c

One can be solved for c = 1 and d = [2]. By symmetry, one can easily see
e = f . Similarly we can solve e = f = [2]. For the last equation which is known
as Kekule relations [14], we first find g = 1 and j = l from the symmetry. The
following consistency relation

= [2]2 + [2]

= + h + k + j

= (1 + h) + ([2] + j + k)

leads to the equations

h = [3], j + k = 0.

The other consistency relation
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= + [2]

= + i + j + l

= ([2]2 + i) + ([2] + j + l)

leads to the equations

i = [3], j + l = 0.

Thus, we find g = 1, h = [3], i = −[3] and j = k = l = 0. Therefore, it com-
pletes the proof of Theorem 1.1. We further conjecture that the presentation
in Theorem 1.1 is confluent thus a spider presentation.

5. Further research problems

The key ingredient to find the quantum representation category of Lie alge-
bras is to use the quantum dimension of fundamental representation and other
irreducible representations. However, an analogue for quantum superalgebras
does not work, the super dimension of a finite dimensional modules over a Lie
superalgebra is zero. This was reflected on the relation (1). However, this
will lead us to trivial link invariants for all links. Geer and Patureau-Mirand
suggested that we can make a nontrivial trace for the special linear Lie super-
algebras sl(n|m), n 6= m [5]. Therefore, we need to come up with a different
and new way to make our link invariant to be nontrivial.
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