• Title/Summary/Keyword: finite element numerical simulations

Search Result 435, Processing Time 0.033 seconds

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

A MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN POROUS MEDIA

  • Kim, Mi-Young;Park, Eun-Jae;Thomas, Sunil G.;Wheeler, Mary F.
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1103-1119
    • /
    • 2007
  • We consider multiscale mortar mixed finite element discretizations for slightly compressible Darcy flows in porous media. This paper is an extension of the formulation introduced by Arbogast et al. for the incompressible problem [2]. In this method, flux continuity is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and polynomial degree of approximation. Parallel numerical simulations on some multiscale benchmark problems are given to show the efficiency and effectiveness of the method.

Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies (축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석)

  • 장동환;조승한;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

Comparing finite element and meshfree particle formulations for projectile penetration into fiber reinforced concrete

  • O'Daniel, James;Adley, Mark;Danielson, Kent;DiPaolo, Beverly;Boone, Nicholas
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.103-118
    • /
    • 2010
  • Penetration of a fragment-like projectile into Fiber Reinforced Concrete (FRC) was simulated using finite element (FE) and particle formulations. Extreme deformations and failure of the material during the penetration event were modeled with multiple approaches to evaluate how well each represented the actual physics of the penetration process and compared to experimental data. A Fragment Simulating Projectile(FSP) normally impacting a flat, square plate of FRC was modeled using two target thicknesses to examine the different levels of damage. The thinner plate was perforated by the FSP, while the thicker plate captured the FSP and only allowed penetration part way through the thickness. Full three dimensional simulations were performed, so the capability was present for non-symmetric FRC behavior and possible projectile rotation in all directions. These calculations assessed the ability of the finite element and particle formulations to calculate penetration response while assessing criteria necessary to perform the computations. The numerical code EPIC contains the element and particle formulations, as well as the explicit methodology and constitutive models, needed to perform these simulations.

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

INTERNAL FEEDBACK CONTROL OF THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Piao, Guang-Ri;Lee, Hyung-Chen
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.269-277
    • /
    • 2014
  • A numerical scheme is proposed to control the BBMB (Benjamin-Bona-Mahony-Burgers) equation, and the scheme consists of three steps. Firstly, BBMB equation is converted to a finite set of nonlinear ordinary differential equations by the quadratic B-spline finite element method in spatial. Secondly, the controller is designed based on the linear quadratic regulator (LQR) theory; Finally, the system of the closed loop compensator obtained on the basis of the previous two steps is solved by the backward Euler method. The controlled numerical solutions are obtained for various values of parameters and different initial conditions. Numerical simulations show that the scheme is efficient and feasible.

A Study on Orbital Forming Analysis of Automotive Hub Bearing using the Explicit Finite Element Method (외연적 유한요소법을 이용한 자동차 Hub Bearing의 Orbital Forming해석에 관한 연구)

  • Cho, Hyun-Jik;Koo, Jeong-Seo;Bae, Won-Rak;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, the orbital forming analysis of an automotive hub bearing was studied to predict forming performances using the explicit finite element method. To find an efficient solution technique for the orbital forming, axisymmetric finite element models and 3D solid element models were solved and numerically compared. The time scaling and mass scaling techniques were introduced to reduce the excessive computational time caused by small element size in case of the explicit finite element method. It was found from the numerical simulations on the orbital forming that the axisymmetric element models showed the similar results to the 3D solid element models in forming loads whereas the deformations at the inner race of bearing were quite different. Finally the strains at the inner race of bearing and the forming forces to the peen were measured for the same product of the numerical model by test, and were compared with the 3D solid element results. It was founded that the test results were in good agreements with the numerical ones.

Particle-based Numerical Modeling of Linear Viscoelastic Materials using MPM based on FEM for Taylor Impact Simulations

  • Kim, See Jo
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2018
  • Taylor rod impact tests have been the subject of many theoretical and experimental investigations. This paper discusses the numerical methods for simulating the Taylor impact test, which is widely used to obtain constitutive equations and failure conditions under high-velocity collisions of materials. With this in mind, a particle-based MPM (material point method) for linear viscoelastic solid materials was implemented, and MPM simulations for viscoelastic deformation behavior were numerically verified and confirmed by comparing the MPM and FEM results. In addition, this modeling and numerical approach could be extended to more complex viscoelastic models for basic understanding and to analyze the deformation and fracture behavior of more complicated viscoelastic material systems.

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

Guided Wave Calculation and Its Applications to NDE

  • Hayashi, Takahiro
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2004
  • This paper describes the calculation technique for guided wave propagation with a semi-analytical finite element method (SAFEM) and shows some results of numerical calculation and guided wave simulation for plates, pipes and railway rails. The SAFEM calculation gives dispersion curves and wave structures for bar-like structures. Dispersion curve software for a pipe is introduced, and also dispersion corves for a rail are given and experimentally verified. The mode conversions in a plate with a defect and in a pipe with an elbow or a defect are shown as examples of our guided wave simulations.