• Title/Summary/Keyword: finite element impact analysis

Search Result 801, Processing Time 0.024 seconds

Impact Analysis of the Spacer Grid Assembly for PWR Fuels(III) (경수로 핵연료 지지격자체의 충격해석(III))

  • Song, Kee-Nam;Lee, S.B.;Lee, H.A.;Kim, J.K.;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.305-308
    • /
    • 2007
  • The spacer grid assembly is one of the main structural components of the nuclear fuel assembly of a PWR. The spacer grid assembly supports and aligns the fuel rods, guides the fuel assemblies past each other during handling and, if needed, sustains lateral seismic loads. The ability of the spacer grid assembly to resist the lateral loads is usually characterized in terms of its dynamic and static crush strengths, which are acquired from tests. In this study, a finite element analysis on the dynamic crush strength of spacer grid assembly specimens is carried out and compared with test results.

  • PDF

Impact Analysis of Laminated Composite Plate Using Higher-Order Shear Deformation Theory (고차 전단 변형 이론에 의한 적층 복합판의 충격 해석)

  • 김문생;김남식;이현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.735-750
    • /
    • 1991
  • 본 연구에서는 적층 복합판의 충격 해석을 위하여 Reddy의 고차 전단 변형 이 론에 기초를 두고, 정적 압입 실험에 의한 접촉 법칙을 고려한 동적 유한 요소 해석 (dynamic finite element analysis)을 행하여 충격 실험에 의한 결과와 1차 전단변형 이론에 의한 해와 비교 검토하므로서, 그 유용성과 우수성을 입증하고, 적층 복합재의 충격 응력 및 응력파 전파 특성에 대하여 연구하고자 한다.

Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process (고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발)

  • Son, Hee-Jin;Kim, Sung-Yuk;Oh, Beom-Seok;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.

Compressive Deformation Behaviors of Aluminum Alloy in a SHPB Test (SHPB 시험과 알루미늄 합금의 압축 변형거동)

  • Kim, Jong-Tak;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.617-622
    • /
    • 2012
  • Structures are often subjected to various types of loading such as static, dynamic, or impact loading. Therefore, experimental and numerical methods have been employed to find adequate material properties according to the conditions. The Split-Hopkinson pressure bar (SHPB) test has frequently been used to test engineering materials, particularly those used under high strain rates. In this study, the compressive deformation behaviors of aluminum alloy under impact conditions have been investigated by means of the SHPB test. The experimental results were then compared with those of finite element analyses. It was shown that reasonably good agreement with the true stress-strain curves was obtained at strain rates ranging from 1000 $s^{-1}$ to 2000 $s^{-1}$. When the strain rate increased by 30%, the peak stress in particular increased by 17%, and the strain also increased by 20%.

Finite Element Analysis on the Stress and Deformation Behaviors of a Safety Helmet (안전헬멧의 응력 및 변형거동에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • This paper presents the stress and deformation behaviors using the finite element method as a function of the thickness of the helmets without the bead frames on the top of the shell structure. The helmet that would provide head and neck protections without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and impact energy absorption. The FEM computed results show that when the impulsive force is applied on the top surface of a helmet, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the top surface of the helmet shell. As the helmet thickness is decreased from 4mm to 2mm, the impact energy absorbing rate is radically increased, and the maximum stress of the helmet is increased over the tensile strength, 54.3MPa of the thermoplastic material. Thus, the top surface of the helmet should be supported by a bead frame and increased thickness of the shell structure.

  • PDF

Investigation of Error Factors from an Impact Hammer Test for Developing a Statistic Based Technique for Model Updating (통계 기반 모델 개선을 위한 임팩트 해머 실험의 오차 요인 분석)

  • Lee, Su;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.185-198
    • /
    • 2016
  • In this work, experimental errors from an impact hammer test were investigated to develop a statistic-based technique for updating a finite element model. Digital signal processing was analyzed by using theoretical models and experiments when errors occurred during the experimental procedure. First, the duration time and peak level of the excitation signal, the stiffness and position of elastic springs connecting the specimen as well as the support, position and mass of the accelerometer were considered as error factors during the experiment. Then the picket fence effect, leakage, and exponential window function were considered as candidate error factors during the digital signal processing. Finally, methods to reduce errors are suggested.

Analysis of High Velocity Impact on SFRC Panels Using ABAQUS (ABAQUS를 이용한 강섬유보강 콘크리트 패널의 고속 충돌 거동 해석)

  • Son, Seok-Kwon;Jang, Seok-Joon;Yun, Hyun-Do;Kim, Yong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • This paper employed finite element method (FEM) to study the dynamic response of Steel Fiber-Reinforced Concrete(SFRC) panels subjected to impact loading by spherical projectiles. The material properties and non-linear stress-strain curves of SFRC were obtained by compression test and flexural test. Various parametric studies, such as the effect of fiber volume fraction and thickness of panels, are made and numerical analyses are compared with experiments conducted. It is shown that protective performance of concrete panels will be improved by adding steel fiber. Area loss rates and weight loss rates are decreased with increasing fiber volume fraction. Also, penetration modes can be expected by FEM, showing well agreement with experiment. Results can be applied for designing the protection of military structures and other facilities against high-velocity projectiles.

Experimental Study on the Dynamic Response of Box Girder Long-Span Bridges under Various Travelling Vehicles (다양한 차량주행에 의한 박스형 장대교량의 동적 응답에 관한 실험적 연구)

  • Lee, Rae-Chul;Lee, Sang-Youl;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.129-138
    • /
    • 2004
  • In this study we determine a dynamic analysis of the existing two-span prestressed concrete box girder bridge subjected to moving vehicle loads using the experimental measurements. The moving loads applied in this paper are classified as general travelling, suddenly brake, continuous travelling, reversely travelling and reversely travelling impact loads for increasing velocities. For each travelling load, we search dynamic behaviors and characteristic in various measuring point of box girder section. In addition, the three-dimensional numerical results analyzed by the developed finite element program using flat shell element with six degrees of freedom per a node are compared with the measured experimental data. Dynamic behaviors caused impact loads by suddenly braking, reversely travelling, are bigger than by general travelling in box girder. Three-dimensional numerical results are better than one-dimensional results.

A Study on the Stiffness of a 13degree-type Impact Tester for Aluminum Wheels (자동차용 휠(wheel)의 충격해석 신뢰도 향상을 위한 13도법 충격시험기의 강성 연구)

  • Ko, Kil-Ju;Kim, Man-Seob;Song, Hyun-Woo;Yang, Chang-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.12-19
    • /
    • 2006
  • It is positively necessary to study on the stiffness of a 13degree-type impact tester in order to improve the fracture prediction of impact testing in wheels using FE(finite-element) analysis. The 13degree-type impact tester consists of an impact striker, a wheel fixer, a steel plate, and four cylindrical rubbers. Important parts of the tester are the steel plate and four cylindrical rubbers which play a role of absorbing impact energy during impact testing. Because of these buffers, the RF(reaction force) variation of the lower part in the 13degree-type impact tester showed the tendency like a damped harmony oscillation during impact testing. In order to investigate the stiffness of a 13degree-type impact tester, this work measured each stiffness of a steel plate and cylindrical rubbers. The stiffness of a cylindrical rubber was measured using a compressive tester. On the other hand, the stiffness of a steel plate was predicted by simulating experimental method using FE analysis.

Finite Element Analysis of Pipe Whip Restraint Behavior Under Jet Thrust Forces (유체 분사 추진력을 받는 배관 휩 구속장치 거동에 관한 유한요소해석)

  • Sugoong Koh;Lee, Young-Shin
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.353-360
    • /
    • 1993
  • Many types of pipe whip restraints are installed to protect the structural components from the anticipated pipe whip phenomena of high energy lines in nuclear power plants. It is necessary to investigate these phenomena accurately in order to design the pipe whip restraints properly and/or to evaluate the acceptability of the pipe whip restraint design. Various research programs have been conducted in many countries to develop analytical methods and to verify the validity of the methods. In this study, various types of finite elements in ANSYS[1], the general purpose finite element computer program, was used to simulate the postulated pipe whips to obtain impact loads and the calculated results were compared with the specific experimental results from the sample pipe whip test for the U-shaped pipe whip restraints. Some calculational models, having the gap element or the spring element between the pipe whip restraint and the pipe line, give reasonably good transient responses of the restraint forces compared with the experimental results, and could be useful in evaluating the acceptability of the pipe whip restraint design.

  • PDF