• Title/Summary/Keyword: finite element impact analysis

Search Result 801, Processing Time 0.031 seconds

Investigating the Spatial Focusing Performance of Time Reversal Lamb Waves on a Plate through the Finite Element Method (유한요소법을 통한 판에서 시간반전 램파의 공간집속성능 규명)

  • Choi, Jeong-Hee;Lee, Hae-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1120-1131
    • /
    • 2011
  • Researches using time reversal acoustics(TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of a plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric(PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings (유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구)

  • Bae, Gyu-Yeol;Kang, Ki-Cheol;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

Detection of Inclusions in Concrete Slab by Impact-Resonance Method (충격공진법을 이용한 콘크리트 슬래브 내의 개재물 검출)

  • Kim, Hak-Hyun;Yim, Hyun-June;Lee, Kwang-Myong;Cho, Nam-Jun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.221-230
    • /
    • 2000
  • The usefulness and limitations of the impact-resonance method, which is a nondestructive evaluation (NDE) method for concrete, are studied by both experimental and theoretical methods. For the experimental study, several concrete slab specimens with various inclusions embedded were fabricated, and tested by the impact-resonance method. Some of the inclusions have been detected and accurately located, but some have not. The reasons for the failure in the latter cases have been investigated theoretically by using finite element analyses, from which the primary factors determining the success of the method have also been identified. This study will serve to enhance the understanding of the underlying physics and to improve the usefulness of the impact-resonance method as applied to concrete NDE.

  • PDF

Investigation of Impact Behavior by Thickness variation of Laminated Composite Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 두께 변화에 따른 충격거동 조사)

  • Kwon, Suk-Jun;Jeon, Jin-Hyung;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.74-79
    • /
    • 2008
  • In this study, impact transient responses of (Graphite/Epoxy) laminated composite subjected to low-velocity impact are investigated using a finite element method. Dynamic von-Karman plate equations considering large deflection of plate are modified to include the effect of transverse shear deformations as in Mindlin plate theory and also the rotary inertia effect is considered. The convergence of transient responses is used contact law established through the statical indentation test. We investigate displacements, contact forces and strains by thickness variation of various laminated composite. We compare and analyze each results.

  • PDF

A Study on Side Impact from Car-to-Car using Finite Element Analysis (유한요소해석을 이용한 차대차 측면충돌에 대한 연구)

  • Han, Yuong-Kyu;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • The deformed degree of car body varies largely with the collision part from side collision of car-to-car. In case of deformation of car body caused by collision, the movement is different as speed energy changes to strain energy. Generally, in the analysis of traffic accident, the movement of car after the collision is analyzed by law of conservation of motion and the error of energy absorption rate along the deformation of car body can be calibrated by inputting coefficient of restitution, but it is current situation that coefficient of restitution applied by referring to the research results of forward collision and backward collision because the research results of side collision is rare. Vehicle model of finite element method applied by structure of car body and materials of each component was analyzed by explicit finite element method, and coefficient of restitution and collision detection time along contact part of side collision was drawn by analyzing the results. Analysis result acquired through the law of conservation momentum by applying finally-computed coefficient of restitution and crash detection time compared to collision result of actual vehicle. As a result, the reliability of analysis was higher than the existing analysis method were acquired when applying the drawn initial input value that used finite element method analysis model.

Postbuckling Analysis of Thin Plates under Impact Loading (충격하중을 받는 박판의 후좌굴 해석)

  • Kim, Hyeong-Yeol;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.139-149
    • /
    • 2002
  • An explicit direct time integration method based solution algorithm is proposed to predict dynamic postbuckling response of thin plates. Based on the von Karman's plate equations and Marquerre's shallow shell theory, a rectangular plate finite element is formulated and utilized in this study. The element formulation takes into account geometrical nonlinearity and initial deflection of plates. The solution algorithm employs the central difference method. Using the computer program developed by the authors, dynamic postbuckling behavior of elastic thin plates under impact loading is investigated by considering the time variation of load and load duration. The efficiency of the proposed solution algorithm is examined through illustrative numerical examples.

Free Vibration Analysis of Circular Cylindrical Shells with Longitudinal, Interior Rectangular Plate (내부에 길이방향 사각판이 부착된 원통셸의 자유진동 해석)

  • 이영신;최명환;류충현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.205-210
    • /
    • 1997
  • The analysis of the free vibrations of a circular cylindrical shell with a logitudinal, interior rectangular plate is performed. The natural frequencies and the mode shapes of the combined shells are experimentally obtained by impact testing using an impact hammer and an accelerometer. The effects of the position of the plate on the frequencies and mode shapes of the combined system are examined. The experimental results are compared with a finite element analysis and show good agreement.

  • PDF

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

An Engine Structure-Borne Noise Analysis by Finite Element Method (유한요소법에 의한엔진 구조소음 해석)

  • 안상호;김주연;김규철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.122-133
    • /
    • 1998
  • This paper presents the static analysis, the modal analysis and the forced vibration analysis on engine structures to find out the structure-borne noise sources by finite element method. The deformation of engine structures under the maximum combu- stion gas force was calculated through the static analysis, and the resonance possibilities were predicted by the modal analysis which ascertains mode shapes and the corresponding frequencies of engine global and its major noise sources in engine surfaces were investigated with the forced vibration analysis by means of finding the transfer mobilities on engine surfaces due to the piston impact and the velocity levels due to the combustion in consideration of oil film stiffness and damping coefficients. Finally, the direction of engine structure-borne noise reduction can be estabilished by the above-mentioned analysis procedure and the reduction effect of cost on proto-type engine build-up is expected.

  • PDF

Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure (충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석)

  • 신현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.