• Title/Summary/Keyword: finite element beam model

Search Result 938, Processing Time 0.035 seconds

Damage detection in laminated beams by anti-optimization (반 최적화기법에 의한 적층복합보의 손상추적)

  • 이재홍
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • The present study proposes a detection technique for delaminations in a laminated compoiste structure. the proposed technique optimizes the spatial distribution of harmonic excitation so as to magnify the difference in response between the delaminated and intact structures. The technique is evaluated by numerical simulation of two-layered aluminum beams. Effects of measurement and geometric noises are included in the analysis. A finite element model for a delaminated beam, based on the layer-wise laminated plate theory in conjunction with a step function to simulate ddelaminations, is used.

  • PDF

The Experimental and Analytical Study on the Behavior of Composite Beam in the Processing of External Post Prestressing strengthen (외부 후긴장 보강 과정의 합성보 거동에 대한 실험 및 해석적 연구)

  • Park, Yong-Gul;Park, Young-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.147-153
    • /
    • 2001
  • The major objectives of this study are to investigate experimental and analytical behavior of composite steel plate strengthened by external post prestressing method and to study the increasing magnitude of load carrying capacity by the external post prestressing method. With installed strain gauges and LVDT, the change of structural behaviors according to the amount of prestressing force is measured and the effects of shear strengthening according to the degree of angle in tendon are studied. The analytical structural behavior according to the amount of prestressing force is also investigated using finite element method. The effectiveness of strengthening of external post prestressing method is proved and an efficient FEM model is suggested by comparing the test results and analyzing results.

  • PDF

Characteristics of PFFEM program and vibration analysis of automobile using the developed program (파워흐름유한요소해석 프로그램의 특성과 이를 이용한 자동차 진동해석)

  • 박영호;홍석윤;서성훈;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1083-1088
    • /
    • 2001
  • To predict vibrational energy density and intensity of complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate, beam and some coupled structural elements are developed at present. The vibration energy density and intensity of foreign vehicle is predicted successfully with FE full model of 60,000 DOF using the developed PFFEM program.

  • PDF

Development Technique of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior Caused by Drive Shaft (구동축과 연관된 차량의 부밍 소음 저감을 위한 중공축 개발 기법)

  • Ko, Kang-Ho;Choi, Hyun-Joon;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.187-193
    • /
    • 2000
  • In order to reduce the booming noise caused by first bending mode of drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of drive shaft and applying the boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model for a shaft attached in vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft can be proposed at the early stage of design.

  • PDF

Study on behavior of RCC beams with externally bonded FRP members in flexure

  • Sumathi, A.;Arun Vignesh, S.
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.625-638
    • /
    • 2017
  • The flexural behavior of Fiber reinforced polymer (FRP) sheets has gained much research interest in the flexural strengthening of reinforced concrete beams. The study on flexure includes various parameters like increase in strength of the member due to the externally bonded (EB) Fiber reinforced polymer, crack patterns, debonding of the fiber from the structure, scaling, convenience of using the fibers, cost effectiveness, etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an externally bonded FRP concrete beam. In the design of FRP-reinforced concrete structures, deflection control is as critical as much as flexural strength. A numerical model is created using Finite element (FEM) software and the results are compared with that of the experiment.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS FOR REACTION TO MOLAR UPRIGHTING SPRING (대구치 직립 스프링 적용시 반작용에 관한 삼차원 유한요소법적 연구)

  • Choe, Yoo-Kyung;Kim, Tae-Woo;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.61-74
    • /
    • 1998
  • The Purpose of this study was to investigate the stress distribution and tooth displacement at the initial phase produced by 5 types of molar uprighting springs using finite element method. The three dimensional finite element model of lower dentition, bone and springs was composed of 5083 elements and 2071 nodes. The results were as follows: 1. In case of helical spring and root spring, intrusion of lower canine and first premolar were observed md distal tipping, translation and extrusion of lower second molar were observed. 2. In case of T-loop, modified T-loop and box loop, intrusion and distal translation of lower second premolar were observed, and the largest crown distal tipping and translation of lower second molar were observed in T-loop and the smallest were observed in box loop. 3. In case of T-loop with cinch-bact crown distal tipping and translation of lower second molar were decreased, but extrusion was also decreased. 4. With increase of activation in T-loop, mesial translation and won distal tipping of lower second molar were increased and edentulous space was closing, but distal translation of second premolar was also increased. 5. With increase of tip-back bend in T--loop, distal tipping and translation of lower second molar were increased, but extrusion was also increased more largely.

  • PDF

A three-dimensional finite element analysis for initial stress of maxillary incisiors during activation of upper utility arch wire (Utility Arch Wire 적용시 상악 중절치 및 측절치의 초기 응력 분포에 관한 3차원 유한요소법적 연구)

  • Lee, Jong-hyun;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.411-424
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution of initial compressive and tensile stress when anterior section of upper utility arch was activated crown lingual torque of $5^{\circ},\;10^{\circ},\;15^{\circ}$ through three-dimensional finite element analysis. For this study the finite element model of upper central and lateral incisors, 1st. and 2nd. premolars and 1st. molars and each periodontal membrane and upper utility arch were made. From the solutions of ANSYS the followings were obtained. 1. $5^{\circ},\;10^{\circ},\;15^{\circ}$ crown lingual torque produce the almost similar distribution and measurement of initial compressive and tensile stress. 2. Acivated upper utility arch torqued central inciors lingually and lateral incisors labially.

  • PDF

Non-Liner Analysis of Shear Beam Model using Mode Superposition (모드중첩법을 이용한 전단보 모델의 비선형 해석)

  • 김원종;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1999
  • To analyze the dynamic behavior of structure, direct integration and mode superposition may be utilized in time domain analysis. As finite number of frequencies can give relatively exact solutions, mode superposition is preferable in analyzing structural behavior. In non-linear analysis, however, mode superposition is seldom used since time-varying element stiffness changes stiffness matrix, and the change of stiffness matrix leads to the change of essential constants - natural frequencies and mode shapes. In spite of these difficulties, there are some attempts to adopt mode superposition because of low cost compared to direct integration, but the result is not satisfactory. In this paper, a method using mode superposition in non-linear analysis is presented by separating local element stiffness from global stiffness matrix with the difference between linear and non-linear restoring forces to the external force vectors included. Moreover, the hysteresis model changing with the relative deformation in each floor makes it possible to analyze non-linear behavior of structure. The proposed algorithm is applied to shear beam model and the maximum displacement is compared with the result using direct integration method.

  • PDF

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

An Experimental Study on the Vibration of the PWR Fuel Rod Supported by the Side-sloted Plate Springs (측면 절개된 판형 스프링으로 지지된 경수로 연료봉 진동의 실험적 고찰)

  • 최명환;강흥석;윤경호;송기남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.798-804
    • /
    • 2003
  • One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. A modal test in this paper is performed for a dummy rod 3,847 mm tall supported by eight New Doublet (ND) spacer grids. For the vibration test in air, nine accelerometers, one displacement sensor and one shaker are used for acquiring signals, and an I-DEAS TDAS software Is employed for analyzing the signals. Also, a finite element (FE) analysis is performed by a beam-spring simple model and a contact model simulating the contact phenomenon between the rod and the ND spring. And then, the results of the modal testing are compared with those of the FE analysis. The natural frequencies as well as the mode shapes obtained by the experiment have a greater similarity to the results by the contact model than the previous beam-spring model. In audition, for grasping whether or not the modal parameters are influenced by where shaking spot is, two kinds of tests are performed : one is for the shaker attached at the fourth span (center), the other is for the shaker at the fifth span that is one span nearer to the bottom of the rod. The latter shows higher MAC than the former Finally, the vibration displacements are measured in the range of 0.l12∼0.214 mm for the excitation force of 0.25∼0.75 N.