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Damage Detection in Laminated Beams by Anti-Optimization
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Abstract

The present study proposes a detection technique for delaminations in a laminated compoiste struc-
ture. the proposed technique optimizes the spatial distribution of harmonic excitation so as to magnify
the difference in response between the delaminated and intact structures. The technique is evaluated
by numerical simulation of two-layered aluminum beams. Effects of measurement and geometric noises
are included in the analysis. A finite element model for a delaminated beam, based on the layer-wise

laminated plate theory in conjunction with a step function to simulate delaminations, is used.

Keywords : delamination, anti-optimization

1. INTRODUCTION

Delamination is one of the most commonly
observed damage modes in laminated composi-
tes. It may develop as a result of manufactur-
ing defects or in-service events such as low
velocity impact. Delaminations are not readily
identified by wvisual inspection since they are
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cracks in the interior of the laminate.
Delaminations are known to cause a change
in vibration frequencies and mode shapes of
laminated composites. The delaminated sublam-
inate generally exhibits new vibration modes
and frequencies that depend on the size and lo-
cation of the delamination. Thus, provided
that the natural frequencies and mode shapes
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are known for a composite containing delamin-
ations, thé presence of invisible delaminations
can be detected, and their size and location
can further be estimated.

Not much research has been done on det-
ecting the existence and location of delamina-
tions in laminated composites, Hanagud et al.!
proposed a method to detect a delamination in
a laminated beam by comparing the vibration
signature of a delaminated beam with an intact
beam. They showed that it is difficult to as-
sess the size and location of the delamination
from the time response itself, and that care
must be taken to calibrate the sensor response
to detect the delaminations. Teboub and Hajela?
proposed a neural network based strategy for
detecting delamination, fiber breakage, and
matrix cracking in laminated composites. They
computed the slopes of the strains at the meas-
urement points by using piezoelectric sensors.
Kim, et al.” used strain sensors on the surface
and inside the material for detecting delamina-
tions in laminated composites, Their results
suggested that numerous sensors would be
needed for large structures.

In the present paper, a finite element model
based on the layer-wise laminated plate theory?
1s used to compute the steady state response
of delaminated and intact beams. Then, an
anti-optimization strategy is used in conjunc-
tion with system identification techniques for
detecting a delamination. Anti-optimization is
a method for maximizing differences between
alternative models. Haftka an Kao® maximized
the ratio and difference between two laminat-
ed composite failure models by varying the
loading, the geometry, and lamination angles.
Gangadharan et al.” sought the loads that max-
imize the difference in strain energies between
two finite element models. They showed that
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the optimal discriminating loading was the sol-
ution to a generalized eigenvalue problem.

In this paper, ratios of strain energies are
considered as a measure of the difference be-
tween intact and delaminated beams. The rat-
ios are then maximized by solving eigenvalue
problems, After obtaining the excitation which
maximizes the response ratio between delamin-
ated and undelaminated beams, this excitation
is used to detect the location of delamination
as a force input in a residual force calculation,

2. DYNAMIC MODELLING OF DELAMINATION

The notation here follows that of Lee et al.?
To model multiple delaminations, the displace-
ment field is supplemented with unit step fun-
ctions which allow discontinuities in the dis-
placement field (Fig. 1). The resulting displac-
ements u; and uy at a generic point x, z in the
laminate and time t are assumed to be of the
form:

uN
o, Wi

Fig. 1 Kinematics of layerwise theory with delaminations

w(x,z,t)=ulx,t)+¢(z)u(x,t)+5(z) U (xt),
us(x,2,t) =w(x,t)+8(z) W' (x,t), (1)

The superscripts i and j range from 1 to D
and 1 to M, respectively, where D is the num-
ber of delaminations, and M is the number of
layers of a composite. Repeated indices are ten-
sor notation.

The terms u and w are the displacements of
a point(x,0,t) on the reference surface of the

laminate, u' are nodal values of the displace-



ments in the x direction of each layer, and u’
and W ! represent possible jumps in the slip-
ping and opening displacements respectively at
the L(i)th delaminated interface, L(i) denotes
the location of the interface where the i de-
lamination lies, #(z) and §'(z) denote a linear
interpolation function through the thickness of
the laminate and unit step function, respect-
ively.

The Euler-Lagrange equations of motion of
the presente theory can be derived from the

Hamilton’s principle:

Ny = 1% + Ui + I'd, (2a)
Qux = I°W + W, (2b)
L — Qg = Il + IRk + T (2¢)
N, = I'i + Fg + I"d, (2d)
Yoox = ' + 7%, (2¢)

where i,r=1,---,D and j,k=1,---,M. The stress
resultants are

h/2

[Ny, Nj, N, ] = f 0:(1,4.51dz,
2

- h/2 o
[sz,Q]xz,Qi(.z:] == J‘ h/sz[lyﬁz,(sl]dzy (3)
-h/2
and the inertia coefficients are defined as
h/2 o
[1°,1,11] = j ol 1,6,6dz,
—h/2
o e h/2 S
[1%],1°) = j pild#.69.56)dz, (4)
~h/2

where p is the material density. A more detail-
ed mathematical formulation can be found in
Lee et al.?

To obtain finite element equations, the gen-
eralized displacements (u, w, u, @, W) are
expressed over each element as a linear combi-
nation of the one-dimensional interpolation fun-
ctions yi and the nodal values:

SRR

(uw,u, i@, W)=Y (u,w,u,d, &)y (5)
=1

Substituting these expressions into the weak
statement, the finite element model of a typi-
cal element can be obtained. By assemblying
the element matrices, the global stiffness and
mass matrices (K and M) can be obtained.

3. ANTI-OPTIMIZATION

The anti-optimization technique seeks condi-
tions that maximize the difference between
two models. Here anti-optimization is used to
obtain the frequency and spatial distribution of
excitations that maximize the difference be-
tween the delaminated and intact beams under
harmonic excitation, First, consider the equa-
tion of motion of a delaminated beam under
harmonic excitation delivered by N actuators

MU + KU = H fe™, (6)

where o denotes the exitation frequency, M
and K are nxn mass and stiffness matrices,
respectively, of a delaminated beam with n be-
ing the number of total degrees of freedom of
the beam. H is a real matrix which indicates
the locations of actuators, and f is an actuator
input vector with dimension N,

Since the excitation is harmonic, so is the
response

U=ue", (7)
Thus, Eq. (6) becomes

(K ~ o™)u = Hf, (8)

To use anti-optimization, a measure of the
difference in the response between the dam-
aged and intact beams is needed. In this work,
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strain energy measure is considered as de-
scribed below,

Excitations which maximize the ratio E; of
strain energies between delaminated and nom-
inal structures was sought.

_ u'Ku
1 U;FKOUO (9)

where u and u, are the displacement vectors of
delaminated and intact beams for a given exci-
tation, respectively. K, is the stiffness matrix
of an intact beam. Anti-optimization looks for
the excitation that maximizes E;.

At the same time, the calculated displace-
ment fields u should not be associated with

very high natural frequencies, because suh fiel-

ds typically have small amplitudes and are dif-
ficult to measure. This imposes the constraint.
u'Ku

E, = My < b, (10

where w, is a limit frequency.
These two requirements can be combined by
minimizing

1,1 (11a)

E, E

or, alternatively, maximizing

T
Ku

By = ——41500____ 11b

3 uTK U~ Au™u (11b)

where 1 is a positive weighting factor. Since

the frequency and spatial distribution of exci-

tation is to be selected, Eq. (11b) is transfor-
med in terms of excitation,

From Eq.(8), u can be obtained as
u= (K - &™) H f£. (12)

Similarly for the undelaminated beam,
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w = (Ko — o’M,) 'H f. (13)
Now Eq. (11b) can be rewritten as

_ f'Rf
f'Df’

3 (14a)

where

K= H"(K - ™M) 'K(K —w?™) H,

b=R -1M

K, = H"(K, — M) Ko (Ko —w?™,) 'H,

M= H"(K- ™) 'M(K-™)'H  (14b)

are generalized flexibility matrices associated
with the two models. Eq. (14a) indicates that
E; is a Rayleigh quotient, so that its extreme
values are the extreme eigenvalues of the gen-
eralized eigenvalue problem:

(K- EsD)f =o. (15)

For a given set of actuator locations and ex-
citation frequency, the actuator excitation am-
plitude vector that extremizes Es; is the eig-
envector of the eigenproblem of Eq. (15).

Stiffness and mass matrices of the delamin-
ated beam (K and M) are unknown in general,
but K and M can be determined experimentally
by measuring the displacements at the actu-
ator locations. The functional E; in Eq.(11b)

can be rewritten using Eq.(8) as:

1"f+eu"™u
WKou,—Au™™Mu’
(16)

B, — u'H f+ofu™™u _
P WK o — Au™u

where = H"u is a reduced displacement vec-
tor corresponding to the locations of actuators.
Displacements at each actuator location of the
beam need to be measured under the action of
a unit load applied at each actuator, one at a
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time. The total displacement at each actutor
location is then obtained as

fll = Sjjf}, (17)

where S; is the displacement generated at the
ith actuator location due to a unit load applied
to the jth actuator. The flexibility matrix H
can be expressed with the aid of Eq. (12) as:

S =H"(K — o’™M) H. (18)

The quantity u'Mu can be determined from
the derivative of H with respect to w’. That

18,

S _—HT(K —'M) "M(K—wM) 'H=M
dw®)

(19)
Therefore, it can be written
U"™Mu = £7-95_¢ (20)

H®)

Note that the quantity 4S /d{w’) can be ex-
perimentally estimated by measuring H for sev-
eral different frequencies w. Finally, the func-
tional E; = {f'Kf/f'Df from Eq. (14a) is now

expressed as:

_ 23S
R=S+ w PIPIR
‘o 35
D= K, i—-—a(wz). (21)

where H is measured for the damaged struc-
ture, and K, is calculated analytically from a
model of the intact structure. If a good model
of the intact structure is unavailable, K, can be

also neasured as:

0S,

= 20
Ko So + w 5((02) s

(22)

where
So = HT(KO — szo)_lH. (23)
4. SYSTEM IDENTIFICATION

After anti-optimization is performed succes-
fully, identifying the location of delamination
in the sturcutre is based on the differences in
responses of delaminated and intact structures
in conjunction with anti-optimization. Assume
that the stiffness and mass in matrices of a del-
and Garba”, can be defined as

K = Ko + mAKi,
M =M, + nAM,, (24)

where #; is an amplitude coefficient and AK;
and AM; are differences in stiffness and mass
matrices for the ith delamination location, re-
spectively. The subscript i indexes the simulat-
ed delaminations.

Using Eq. (24) and Eq. (13), residual force
vector R, which is similar to the one in Chen

and Garba”, can be defined as
(K—w'™M)u, ~Hf=r;(AK —0’AM)u, =R, (25)

The partial derivative of the residual force
R with respect to the parameter n becomes
JR

= = (AK -’ AM)iu,. (26)
on;i

Observe that {(AK —w’AM); can be predeter-
mined for all simulated delamination locations,
The displacement vector of an intact structure
u, in Eq. (26) is calculated from Eq. (13) with
an anti-optimization solution as a force vector
f. The partial derivatives of the residual force
are calculated for all degrees of freedom of the
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beam, and later they are lumped into a par-
ameter for each finite element node.

The delamination location is assumed to be
the region where the derivative of residual for-
ce is high. When there is more than one peak
in the residual force response, all the candi-
date locations are investigated further as fol-
lows: Find the maximum excitation ratio and
corresponding eigenvector f° for a given exter-
nal frequency w using the anti-optimization
method described in the previous section for
all candidates. Then the angles between the
solution f of the original {measured) system
with unknown delamination and the candidates

f¢ are calculated as:

6 = arccos (ﬂ—flﬁm—) 0°<8<90°. (27)

The candidate whose eigenvector makes the
smallest angle with the measured eigenvector
1s considered to be the actural location of de-
lamination, After determining the delamination
location, the delamination size can be estim-
ated by comparing the eigenvalue of candidate
size with experimentally achieved eigenvalue,

5. NUMERICAL EXAMPLES

A simply-supported aluminum beam of len-
gth 1=3ft and thickness h=0.5in with a de-
lamination at the midplane is considered for
numerical investigation(Fig, 2): material prop-

erties are

T
A:_—e—’{ !

- L

] h=0.5in
A

Fig. 2 A simply-supported beam with a delamination with midplane
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E=10 psi, v=0.3

1bm
in®

L3
p=0.11PM — 959 10‘3“’in. (28)

A 7.2in delamination (20% of the beam
span) is assumed to be centered at the lo-
cation e /1=0.3. Three actuators distributed
uniformly along the axis of the beam are bon-
ded on the top surface of the beam, and six
sensors are attached on the bottom surface of
the beam. Finite element analysis based on the
theory described in the previous section is
employed to solve the problem with 20 linear

finite elements.

5.1 Natural Frequencies

The first ten natural frequencies of the
beam are calculated and compared to those of
its undelaminated counterpart in Table 1.
There are not remarkable differences in freq-
uencies between the two models for the first
five modes. The 6th natural frequency of the
delaminated beam (1140.110Hz) is identified as
a delamination mode which is a non classical
mode shape(Fig. 3). This special mode can
lead to response differences from an undelamin-
ated beam. As noted by Hanagud et al. (1992),
however, it may be difficult to detect the size
and the location of the delamination from the
time response data. Furthermore, it is not easy
to assess the delamination by this high fre-
quency excitation. Therefore, the actuator for-
ces should be optimized such that the delamin-
ated beam can be excited to maximize the re-
sponse difference from the undelaminated
beam even for low excitation frequencies,

l < = ]

Fig. 3 Delamination Mode at 1140.1 Hz
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Table 1 Natural frequencies of delaminate and
undelaminated beams

Delaminated (Hz) Undelaminated (Hz)
1 35.91 36.14
2 144.55 145.75
3 293.35 332.57
4 541.31 603.02
5 922.77 966.64
6 1140.10 1436.67
7 1207.85 2030.88
8 1751.60 2772.62
9 2390.73 2806.10

10 2800.28 3602.31

5.2 Weighting Parameter

To show the effect of the weighting par-
ameter A, the response ratio E; was maximized
for increasing values of 1 by the eigenvalue
problem (15). For each case, the correspond-
ing values of E; and E, are given in Table 2, In
this example, the excitation frequency (w)
was half of the first natural frequency of the
undelaminated beam (w,).

For A=0 the value of E, falls between the
square of the first (0.051x107%) and the sec-
ond (0.825%107% natural frequencies, which
are not very high frequencies. Consequently,
the displacement fields for A=0 are not assoc-
iated with very high frequency vibration mod-
es, and this A value gives a reasonable approxi-
mation for strain energy anti-optimization. As
A increases, E; and E, approach 1 and the squar
e of the first natural frequency, respectively.
Substantial changes in E; and the eigenvector

Table 2 El and E2 (X 107®%) as a function of A for exci-

tation frequency equal to 0.5 w,

i El EZ fl f2 fii

0 1.364 0.653 -0.879 1 -0.481
10° 2.364 0.589 -0.877 1 0,478
10* 1.300 0.144 -0.808 1 -0.418
10° 1.023 0.051 -0.229 1 0.350

f do not occur until i reaches 10°, For all cases,
the combined ratio E; was always found to be

greater than 1.

5.3 Effects of Errors

In many practical situations, measurement nois-
e and modelling errors may be significant. To sim-
ulate such noise and errors, matrix K in
Eq. (21) calculated from the strain energy
anti-optimization are perturbed as follows:

K; = [1+N(2R-1) IK;; (29)

where N 1s a noise amplitude and R is a ran-
dom number uniformly distributed between
zero and one,

In general, beams are not perfect geometric-
ally, and have variations in material properties
and geometry. Such imperfections are simulat-
ed through random thickness of each finite el-
ement is allowed to vary within 5% combined
with the variation of Kmatrix. The relative er-
rors of two extreme eigenvalues defined as

IE perturbed Eexactl
E exact

AE = (30)
and the angles between exact and perturbed
eigenvectors are presented in Table 3. For w
/e = 05, the results are shown to be sensi-
tive to the variation of K with more than 1%
noise of measurement error producing unac-
ceptable errors. At excitation frequency close
to the resonance, the results are too sensitive to
be meaningful. This is because of the unstable
nature of K matrix near the resonance. Thus,
this excitation frequency is not appropriate for
identification, For higher excitation frequen-
cies, the results are much less sensitive to the
measurement noise. For w /w1 = 2 the angle
between exact and perturbed eigenvector dif-
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fer only 3° even for 5% measurement noise.
This excitation frequency is found to be the
best among the frequencies considered. For all
the cases, the effect of thickmess variation
seems to be neglible compared to the meas-

urement noise.

Table 3 Effect of the number of strain sensors for w/ w

=5
. Actuators
Nurber of Strain sensors E f 5 3
3 3.816 0.71 1 0.689
4 2.738 1 -0.207 0.899
6 1.549 0.752 1 0.593
10 1.870 1 0.512 0.908
20 1.982 1 0.616 0.931
Strain Energy Solution  E3=2.055 1 0.617 0.937

4. Delamination Detection

The actuator magnitude ratios which max-
imize the strain energy ratio are obtained for
three different excitation frequencies. The de-
rivative of the residual force is calculated for
every possible simulated delamination with
size 10% of beam length from node 1 to node
21, and is plotted through the axial location of
the beam in Fig. 4 for with and without meas-
urement noise in K. For each finite element

—-# - win = 5 {no ctron
& waul=2moerron
0 L & wivi=4(noerron)
o B8 — 8- wAvl=D § (5% crror)
-3 [ A - wii=2 (5% error)
3 \ A wl=S (5% erron
8 i Y :
e 3 a ®
‘r"‘/ \\ i L o
h \ A A/
6 &\ B0
® e g 4 8 :
8 ¢ ; .
sl s a ° \ / ‘s
; / \ ; T
a - ! Y
; . K Ay
! ~ . 7 o
2 ' .
F . e 82
L o 443
Ly =X

Fig. 4 The derivative of residual force for a delamination at d/ 1=0.3
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node, these three values are multiplied to help
finding peaks and it is presented in Fig. 5.
There are two peaks in Fig. 5, and delamin-
ated region is found to be either of these two
locations of the beam.

It should be noted that the location corre-
sponding to the higher peak is not necessarily
the location of delamination. Thus, both can
didate locations of delamination are further in
vestigated by using the method described in
the section 4. The location of C: and C: can be
estimated based on Fig. 5 as

C: : delaminated at node 7

C: : delaminated at node 15 (31)
700
no error
“ N e 5% error

- )
400
300
.
w00 | / S
e
3 3 ? 9 n n s 17 114

Fig. 5 The derivative of residual force for a delamination
at e/ 1=0.3(multiplied)

21

Table 4 Estimation of the location of a delamination

Candidate o /wl Es Actuators
fi f2 fa
1 0.5 1.051 -0.894 1 0474 0.605
(node 7) 2 1.053 -0.948 1 0605 0.908
5 1.146 1 073 0927 4128
c2 05 1051 -0.474 1 0894 23517
(node 15) 2 1.053 -0.605 1 -0.948 18.487
5 1.146 0927 0.736 1 548

The eigenvectors for the two candidates are

calculated by using anti-optimization, and the



angles for both candidated are presented in
Table 4 for fjour different excitation frequen-
cies, For all the external frequencies con-

sidered, the angles associated with C: are smal-

ler than thouse associated with C..

In fact, either C: or C. does not exactly corre-
spond to the actual location and size of delami-
nation. For low excitation frequencies, the er-
ror angle 6 between the actual location and the
C: is small. As frequency increases, the angle
becomes larger for Ci, but the error angle for
C: decreases. This is because C. has a mirror
image to the actual delamination location, and
it becomes indistinguishable for larger wave
numbers, That is, for more accurate esti-
mation of delamination location, higher freq-
uencies may be necessary, where as low frequen-
cies are preferable for selecting a candidate
which is closer to actual delamination location.
Consequently, C. is the estimated location of
delamination.

- Once after the location of a delamination is
estimated, the next step is to determine the
size of the delamination, The delamination size
can be detected by comparing the measured
eigenvalues with eigenvalues of candidates,
The candiates are produced by increasing the
size of the delamination which is neighboring
nodes of C, - As shown in Table 5, it can be
concluded that any of the entries except the
one with only node 8 corrupted can be a sol-
ution (observe AE).

Table 5 Estimation of the size of a delamination

Actuators
Corrupted nodes E. f 5 ) AE;
7 1.0561 -0.8%4 1 -0.474 0.235
6,7 1.112  -0.867 1 -0.485 0.185
7.8 1.208 -0.897 1 -0473 0.114
5,6,7 1179  -0.92 1 -0.461 0.136
6,7,8 1.364 -0.879 1 -0.481 0
7,8,9 1.524 -0.9 1 -0.474 0.117

A%

6. Concluding Remarks

In this paper, a technique wihich can detect
a delamination in laminated beams is pres-
ented. Using anti-optimization, the optimal ex-
citation parameter is obtained which extremize
the difference between nominal and delamin-
ated beams. And then, the location and the
size of a delamination is estimated by using
the excitation parameter obtained from
anti-optimization in con juction with system
identification. In order to validate the re-
liability of the theoretical model, geometric
and measurement noise situations are numeri-
cally. simulated. It is found that the present
anti-optimization based system identification
technique detects the size and the location of
delamination succesfully.

REFERENCES

1. Hanagud, S., Babu, G. L. N,, Roglin, R, L.
and Savanur, S. G., 1992 Active Control of Del-
aminations in Composite Structures, Presented
at the 33th AIAA /ASME /ASCE /ASC SDM
Conference, Dallas, Tx.

2. Teboub, Y. an Hajela, P,, 1992 A Neural Net-
work Based Damage Analysis of Smart Com-
posite Beams, Presented at the 4th
AIAA /USAF /NASA /OAISymposium on
Multidisplinary Analysis and Optimization,
Cleveland, OH.

3. Kim, K., Segall, A. and Springer, G., 1993,
The Use of Strain Measurements for Detecting
Delaminations in Composite Laminates, Com-
posite Structures, 23 : 75-84.

4. Lee, J., Gilirdal, Z. and Griffin, O. H., 1993,
Layer Wise Approach for the Bifurcation Prob-
lem in Laminated Composites with Delamina-
tions, AIAA Journal, 31 : 331—338.

5. Haftka, R. T. and Kao, P.J., 1990, The Use of
Optimization for Sharpening Differences be-

A7 DS} oA Rles(ie.6) 181



B HA el 23 HEF R TR &4

tween Models, Paper presented at the ASME nal, 29 : 1319—1326.

Winter Annual Meeting, Dallas, TX. 7. Chen, J. C. and Garba, J. A., 1989, On-Orbit
6. Gangadharan, S. N., Nikolaidis, E. and Haf- Damage Assessment for Large Space Structur-

tka, R. T., 1991, Probabilistic System Identifi- es, AIAA Journal, 26 : 1119—1126

cation of Two Flexible Joint Models, Aiaa Jour- (MLt : 1996. 5. 18)

182 FAMTZZB M9 H[235(1996. 6)



