• 제목/요약/키워드: finite element beam model

Search Result 938, Processing Time 0.027 seconds

Practical Nonlinear FE Analysis of Concrete Beam Considering Material Nonlinearity (재료비선형을 고려한 콘크리트 보의 실용적인 유한요소해석)

  • Chung, Won-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.778-783
    • /
    • 2006
  • This study investigates the ultimate behavior of reinforced concrete beams by means of practical nonlinear finite element (FE) analyses. Uniaxial constitutive models for the concrete and steel material are selected in this study. The adopted material model is integrated into the ABAQUS fiber beam elements through a user-defined material subroutine (UMAT). Within a developed nonlinear finite element framework, the FE results have been compared to experimental results reported by other researchers. It has been found that the proposed finite element model is capable of predicting the initial cracking load level, the yield load, the ultimate load, and the crack distribution with acceptable accuracy.

Finite Element Vibration Analysis of Multi-layered Damped Sandwich Beam with Complex Shear Modulus (복소 전단탄성계수를 갖는 다층 감쇠보의 유한요소 진동 해석)

  • Bae, Seung-Hoon;Won, Sung-Gyu;Jeong, Weui-Bong;Cho, Jin-Rae;Bae, Soo-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • In this paper, the general equation of motion of damped sandwich beam with multi-viscoelastic material layer was derived based on the equation presented by Mead and Markus. The viscoelastic layer, which has characteristics of complex shear modulus, was assumed to be dominantly under shear deformation. The equation of motion of n-layered damped sandwich beam in bending could be represented by (n+3)th order ordinary differential equation. Finite element model for the n-layered damped sandwich beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

An Efficient Modeling Method for Open Cracked Beam Structures (열린 균열이 있는 보의 효율적 모델링 방법)

  • Kim, M. D.;Park, S. W.;S. W. Hong;Lee, C. W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.372.2-372
    • /
    • 2002
  • This paper presents an efficient modeling method fur open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of open cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the difficulty and numerical errors in association with re-meshing the structure. The proposed method is rigorously compared with a commercial finite element code. (omitted)

  • PDF

Simplified Finite Element Model of an Anchor Bolt Inserted Through Concretes Considering Clamping Forces (체결력을 고려한 콘크리트 삽입 앵커볼트의 간편 유한요소 모델)

  • Noh, Myung Hyun;Lee, Sang Youl;Park, Kyu Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • In this study we proposed a simplified finite element model of anchor bolt system inserted through concrete structures considering clamping forces. The three different finite element types using LS-DYNA are applied for numerical efficiency of the anchor bolt modeling. Combined beam and solid elements are used to reflect the tension state at internal part of anchor bolt due to torques. The clamping forces due to torques are considered by introducing a compression for a nut plane modeled by beam elements. The numerical examples show good agreement with different element types. Parametric studies are focused on the various effects of different element types on the induced axial and shear forces of anchor bolts considering clamping forces.

Dynamic Equivalent Continuum Modeling of a Box-Beam Typed Wing (Box-Beam 형상 날개의 동적 등가연속체 모델링에 관한 연구)

  • 이우식;김영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2704-2710
    • /
    • 1993
  • A simple and straightforward method is introduced for developing continuum beam-rod model of a box-beam typed aircraft wing with composite layered skin based on "energy equivalence." The equivalent continuum structral properties are obtained from the direct comparison of the reduced stiffness and mass matrices for box-beam typed wing with those for continuum beam-rod model. The stiffness and mass matrices are all represented in terms of the continuum degrees-of freedom defined in this paper. The finite-element method. The advantage of the present continuum method is to give every continuum structural properties including all possible coupling terms which represent the couplings between different deformations. To evaluate the continuum method developed in this paper, free vibration analyses for both continuum beam-rod and box-beam are conducted. Numerical tests show that the present continuum method gives very reliable structural and dynamic properties compared to the results by the conventional finite-element analysis. analysis.

Testing and finite element modeling of stressed skin diaphragms

  • Liu, Yang;Zhang, Qilin;Qian, Weijun
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2007
  • The cold formed light-gauge profiled steel sheeting can offer considerable shear resistance acting in the steel building frame. This paper conducted the full-scale test on the shear behavior of stressed skin diaphragm using profiled sheeting connected by the self-tapping screws. A three-dimensional finite element model that simulates the stressed skin diaphragm was developed. The sheet was modeled using thin element model while the supporting members were simulated using beam elements. Fasteners were represented in the numerical model as equivalent springs. A joint test program was conducted to characterize the properties of these springs and results were reported in this study. Finite element model of the full-scale test was analyzed by use of the ANSYS package, considering nonlinearity caused by the large deflection and slip of fasteners. The experimental data was compared with the results acquired by the EUR formulas and finite element analysis.

Updating of a Finite Element Model with a Damping Effect Using Frequency Response Functions (주파수응답함수를 이용한 감쇠가 있는 유한요소모형의 개선)

  • Lee, Geon-Myeong;Lee, Hyeong-Seok;Lee, Han-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.872-880
    • /
    • 2002
  • The finite element analysis is frequently used to predict dynamic responses of complex structures. Since the predicted responses often differ from experimentally measured ones, updating of the finite element models is performed to make the finite element results agree with the measured ones. Among several model updating methods, one is to use FRF(frequency response function) data without a modal analysis. This paper investigates characteristics of the model updating method in order to improve the method. The investigation is focused on how to obtain FRFs for unmeasured rotational displacements and how to consider damping. For the investigation simulated data and experimental data for a cantilever beam are used.