• 제목/요약/키워드: finite element analysis of consolidation

검색결과 83건 처리시간 0.019초

정규 압밀 점성토의 2차원 배수 압밀 거동에 대한 수치해석 (Numerical Analysis on Consolidation of Normally Consolidated Clays with 2-Dimensional Drainage)

  • 정영훈;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.669-676
    • /
    • 2000
  • The estimation of consolidation rate is one of the important factors in the construction on soft clayey deposits. A number of researches are carried out to predict the consolidation behavior in field, however, most of the results show the discrepancies between the prediction and observation. This paper analyzes consolidation behavior of normally consolidated clay in K/sub o/ condition with 2-dimensional drainage by use of the numerical methods. Elastic and elastic-plastic finite element analyses are compared in terms of the dissipation of excess pore pressure. These results are also compared with Terzaghi-Rendulic's equation that is implemented by finite difference method. The consolidation time calculated by using elastic model is found to be similar to the result of Terzaghi-Rendulic's equation. The consolidation predicted by MCC model takes more time than other cases. Initial increase of excess pore pressure in radial drainage can be shown, however, this phenomenon does not have a significant effect on tile final consolidation time.

  • PDF

배수조건에 따른 압밀 거동의 수치적 분석 (Numerical analysis of Consolidation Behavior under Various Drainage Conditions)

  • 오상호;조완제;윤찬영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF

점토의 구성관계에 대한 내재적인 응력적분 (An Implicit Stress Integration for the Constitutive Relationship of Clays)

  • 오세붕
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.92-98
    • /
    • 1998
  • Nonlinear finite element analyses of one dimensional consolidation problem were performed using an anisotropic hardening constitutive model. For the analyses, the anisotropic hardening elasto-plastic constitutive model based on the generalized isotropic hardening(GIH) rule was implemented into a nonlinear finite element analysis program, PLASTIC. In order to preserve the accuracy of the finite element solution for nonlinear problems, an implicit stress integration algorithm was employed. A consistent tangent moduli could also ensure the quadratic convergence of Newton's method. As a result, the nonlinear solution was accurately calculated and was converged to be asymptotically quadratic. In a consolidation problem, the relationship between load and settlement and between settlement and time vertical was analyzed comparing with results using the Cam-clay type model and the final consolidation settlement and the duration of primary consolidation could be evaluated rigorously using the GIH constitutive model.

  • PDF

해석기법에 따른 압밀거동 변화에 관한 연구 (A study for Variation of Consolidation Behavior by Analysis Method)

  • 정연인;김민중
    • 해양환경안전학회지
    • /
    • 제17권2호
    • /
    • pp.97-103
    • /
    • 2011
  • 본 연구에서는 연약지반을 개량하기 위해 제한성을 가지고 있으나 연약지반 침하예측에 사용되고 있는 미소 변형률기법과 보다 연약지반의 실제 압밀거동에 부합하는 것으로 알려진 유한 변형률기법을 이용하여 배수재가 타설된 연약지반의 압밀거동에 대한 유한요소해석을 수행하였다. 유한요소해석은 지반조건, 하중재하조건 등 조건별로 연약지반의 압밀거동에 대하여 수행하였으며 그 결과를 비교 분석하여 수치해석 기법에 따른 영향을 파악하고자 하였다.

팽이기초공법(Top-Base Method)의 하중-침하량 분석 (Load-Settlement Characteristics of Concrete TOP-BASE Foundation on Soft Ground)

  • 김재영;정상섬;이재환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.210-221
    • /
    • 2009
  • A new foundation type which is called Top-Base method has been used frequently in engineering practices in Korea. In this study, the settlement behavior of concrete Top-Base foundation on soft ground is investigated since the consolidation settlement of the embedding depth and the effect of footing dimensions are not included in current Korean criterion (2007). To obtain detailed information, the model tests of the Top-Base foundation are performed using the PLAXIS 3D finite element analysis. It is shown that in-situ measurements and finite element analysis of the behavior of foundations indicate that consolidation settlement is reduced up and bearing capacity of the foundation increases up to 50%~100%, compared to the primary non-treated ground. Based on this study, it is found that the Top-Base foundation prevents the lateral deformation of soft ground and reduces its negative dilatancy to the surface settlement, and that the foundation creates rather uniform stress distribution under it to increase its bearing capacity. It is also found that the total settlement of Top-Base foundation was highly dependent on the consolidation settlement and footing configurations.

  • PDF

분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석 (Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders)

  • 윤승채;복천희;팜쾅;김형섭
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

진공압밀공법 설계를 위한 Macro-element법 기반 유한요소해석 (Finite Element Analysis based on the Macroelement Method for the Design of Vacuum Consolidation)

  • 김하영;김규선
    • 한국지반공학회논문집
    • /
    • 제38권8호
    • /
    • pp.29-37
    • /
    • 2022
  • 연직배수재로 개량된 지반의 배수거동을 해석하기 위해서는 3차원 해석이 필요한데, Macro-element법을 이용하면 2차원 평면변형 조건으로 연직배수재의 3차원 배수효과를 고려한 효과적인 해석이 가능하다. 본 연구에서는 지반개량에서 적용되는 진공압밀공법에 Macro-element법을 적용하여 새로운 유한요소해석 프로그램을 개발하였다. 기존의 Macro-element법은 배수재의 과잉간극수압을 0으로 하여 연직배수량을 산정하였으나, 본 연구에서 개발된 프로그램은 부(-)의 과잉간극수압을 실제 진공압밀 조건과 동일하게 고려할 수 있도록 개선하였다. 프로그램의 성능 검증을 위해 진공압밀공법 적용 현장의 계측치와 비교한 결과, 프로그램으로 예측한 결과와 현장 계측데이터는 동일한 침하거동을 나타내었다.

분말 ECAP 공정 시 치밀화의 유한요소해석 (Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders)

  • 윤승채;팜쾅;천병선;이홍로;김형섭
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

유한요소해석을 이용한 SBP 시험의 결과해석 - 점성토 지반의 압밀특성 (Numerical analysis of Self-Boring Pressuremeter test results using FEM - Consolidation characteristics of clay)

  • 장인성;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.67-74
    • /
    • 1999
  • Self-Boring Pressuremeter Test(SBPT) is known to be the most effective in-situ test method which can reliably determine consolidation characteristics as well as deformation modules and untrained shear strength. In order to derive the coefficient of consolidation using SBPT results it is necessary to obtain the dissipation behavior from the pore pressure change with time during constant radial strain(generally 10%) and to derive the reliable time factor(Τ) from the analytical method which considers the real in-situ conditions. As previous studies on time factor are based on the assumptions of plane strain condition that the membrane of SBP is infinite, of untrained condition during the expansion of the probe and of elastic soil behavior during consolidation, these analyses can't consider the real boundary conditions and the real soil behaviour. In this study, consolidation analysis similar to real in-situ conditions including test procedure is conducted using finite element program which employs MCC model and Biot theory. Time factor considering the effects of finite membrane length, the total pressure change during consolidation and partial drainage is proposed and compared with previous results.

  • PDF

A two-phase interface element for simulation of lining systems

  • Liu, X.;Scarpas, A.;Blaauwendraad, J.
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.547-564
    • /
    • 2001
  • The numerical formulation of a two-phase interface element appropriate for porous lining system is presented. The formulation is isoparametric and can be applied both for 2-D and 3-D analysis. Biot's theory is utilized as the basis for the development of the element constitutive theory. In order to be capable of simulating the reinforcing characteristics of some geotextiles utilized as lining system, a reinforcement component has also been implemented into the formulation. By employing this specially developed interface finite element, the influence of soil consolidation on the stress distribution along the lining system of a reservoir and a landfill has been investigated.