• Title/Summary/Keyword: finite element (FE)

Search Result 1,864, Processing Time 0.027 seconds

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

Predicting Mechanical Response of Multilayered Aluminum Sheet Using Finite Element Analysis (유한요소해석 연계 알루미늄 다층판재의 기계적 거동 예측)

  • Sung, J.Y.;Kim, M.H.;Bong, H.J.;Lee, K.S.;Kim, M.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.347-355
    • /
    • 2020
  • The mechanical responses of multilayered aluminum sheet fabricated by roll bonding, i.e., A1050/A3004 (65% A1050, 35% A3004 by thickness), were investigated via combined experiment and finite element (FE) analysis. The mechanical properties were measured using uniaxial tensile tests in various loading directions for the multilayered sheet. The corresponding tests for individual layers were also conducted. The testing samples were prepared by wire electro discharge machining (EDM). Stress-strain curves and Lankford coefficients of the multilayered sheet were then predicted by FE simulations. The measured mechanical properties of the individual layers were utilized as inputs for the simulation. Two yield functions, i.e., isotropic von-Mises and anisotropic non-quadratic Hill1948, were employed. Predicted results were compared with the experimental data and further discussed.

Analysis of Forming Processes of PET Bottle using a finite Element Method (유한요소법을 이용한 PET병의 성형 공정 해석)

  • 주성택;김용환;류민영
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.525-533
    • /
    • 2001
  • PET bottles are main]y manufactured by the stretch blow-molding process. In order to improve the thickness distribution to avoid crack generation at bottom region of one-piece PET bottle, process analysis of stretch blow-molding using a finite element method has been carried out. Finite element analysis has been carried out using ABAQUS/Standard. CREEP user subroutine provided in ABAQUS has been used to model PET behavior that is rate sensitive. Among the process parameters, the effect of plunger movement to thickness distribution of bottle has been considered by axisymmetric analysis. A modified process of plunger movement, which yields more uniform thickness distribution, has been proposed. 3D FE analysis has been done to confirm the validity of the proposed process.

  • PDF

Mixed finite element model for laminated composite beams

  • Desai, Y.M.;Ramtekkar, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.261-276
    • /
    • 2002
  • A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to analyze laminated composite beams by using the minimum potential energy principle. The model has been formulated by considering four degrees of freedom (two displacement components u, w and two transverse stress components ${\sigma}_z$, $\tau_{xz}$) per node. The transverse stress components have been invoked as nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite element model not only ensures the continuity of transverse stress and displacement fields through the thickness of the laminated beams but also maintains the fundamental elasticity relationship between the components of stress, strain and displacement fields throughout the elastic continuum. This is an important feature of the present formulation, which has not been observed in various mixed formulations available in the literature. Results obtained from the model have been shown to be in excellent agreement with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a cross-ply beam under fixed support conditions are also presented.

Investigation of Strain Measurements using Digital Image Correlation with a Finite Element Method

  • Zhao, Jian;Zhao, Dong
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.399-404
    • /
    • 2013
  • This article proposes a digital image correlation (DIC) strain measurement method based on a finite element (FE) algorithm. A two-step digital image correlation is presented. In the first step, the gradient-based subpixels technique is used to search the displacements of a region of interest of the specimen, and then the strain fields are obtained by utilizing the finite element method in the second step. Both simulation and experiment processing, including tensile strain deformation, show that the proposed method can achieve nearly the same accuracy as the cubic spline interpolation method in most cases and higher accuracy in some cases, such as the simulations of uniaxial tension with and without noise. The results show that it also has a good noise-robustness. Finally, this method is used in the uniaxial tensile testing for Dahurian Larch wood specimens with or without a hole, and the obtained strain values are close to the results which were obtained from the strain gauge and the cubic spline interpolation method.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

Finite element analysis based fatigue life evaluation approach for railway bridges: a study in Indian scenario

  • Ajmal, P.C. Hisham;Mohammed, Althaf
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.429-443
    • /
    • 2018
  • Fatigue is a principal failure mode for steel structures, and it is still less understood than any other modes of failure. Fatigue life estimation of metal bridges is a major issue for making cost effective decisions on the rehabilitation or replacement of existing infrastructure. The fatigue design procedures given by the standard codes are either empirical or based on nominal stress approach. Since the fatigue life estimation through field measurements is difficult and costly, more researches are needed to develop promising techniques in the fatigue analysis of bridges through Finite Element Analysis (FEA). This paper aims to develop a methodology for the Fatigue life estimation of railway steel bridge using FEA. The guidelines of IIW-1823-07 were used in the development of the methodology. The Finite Element (FE) package ANSYS and the programming software MATLAB were used to implement this methodology on an Indian Railway Standard (IRS) welded plate girder bridge. The results obtained were compared with results from published literature and found satisfactory.

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Biomedical evaluation of the vertebra based on bone density (골밀도를 고려한 척추의 생체역학적 평가)

  • Kim D.R.;Chae S.W.;Choi K.W.;Lee T.S.;Park J.Y.;Suh J.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1921-1924
    • /
    • 2005
  • In this paper, three-dimensional finite element analysis have been performed to investigate the biomechanics of vertebroplasty in patient. In order to apply various properties of the spine, the functional relation between the well-known apparent density and HU(Hounsfield unit) from CT image were employed and thus real material property can be assigned to each element of FE model. The FE analysis showed similar results with the experiments. With this approach accurate analysis of the spine and the clinical application can be expected.

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.