DOI QR코드

DOI QR Code

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding (School of Civil Engineering, Central South University) ;
  • Qingyuan Xu (School of Civil Engineering, Central South University) ;
  • Hao Sun (School of Civil Engineering, Central South University) ;
  • Fei Lyu (School of Civil Engineering, Central South University)
  • Received : 2022.09.17
  • Accepted : 2023.10.23
  • Published : 2024.06.25

Abstract

To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

Keywords

Acknowledgement

The research was funded by multiple sources. The National Natural Science Foundation of China provided financial support through grants : No. 52008400, No. 51978673, and No. 51978664. Additionally, funding was received from the National Natural Science Foundation of Hunan province under grant No. 2022JJ40609. Furthermore, support was obtained from the Fundamental Research Funds for the Central Universities of Central South University with grant No. 2022ZZTS0604.

References

  1. Abdalla, K.M., Al-Rousan, R., Alhassan, M.A. and Lagaros, N.D. (2020), "Finite-element modelling of concrete-filled steel tube columns wrapped with CFRP", Proc. Inst. Civil Eng.-Struct. Build., 173(11), 844-857. https://doi.org/10.1680/jstbu.19.00011.
  2. Afaghi-Darabi, A. and Abdollahzadeh, G. (2019), "Effect of cooling rate on the post-fire behavior of CFST column", Comput. Concrete, 23(4), 281-294. https://doi.org/10.12989/cac.2019.23.4.281.
  3. Axelsson, K. and Samuelsson, A. (1979), "Finite element analysis of elastic-plastic materials displaying mixed hardening", Int. J. Numer. Methods Eng., 14(2), 211-225. https://doi.org/https://doi.org/10.1002/nme.1620140206.
  4. Bandyopadhyay, S. and Ghosal, A. (2008), "An algebraic formulation of kinematic isotropy and design of isotropic 6-6 Stewart platform manipulators", Mech. Mach. Theory, 43(5), 591-616. https://doi.org/10.1016/j.mechmachtheory.2007.05.003.
  5. Cai, J., Pan, J., Tan, J. and Vandevyvere, B. (2020), "Nonlinear finite-element analysis for hysteretic behavior of ECC-encased CFST columns", Struct., 25, 670-682. https://doi.org/10.1016/j.istruc.2020.03.036.
  6. Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0.
  7. Chang, X., Lin, H.B. and Huang, C.K. (2009), "Experimental study on shear resistance of self-stressing concrete filled circular steel tubes", J. Constr. Steel Res., 65(4), 801-807. https://doi.org/10.1016/j.jcsr.2008.12.004.
  8. Chung, K. (2010), "Prediction of pre- and post-peak behavior of concrete-filled circular steel tube columns under cyclic loads using fiber element method", Thin Wall. Struct., 48(2), 169-178. https://doi.org/10.1016/j.tws.2009.03.005.
  9. Denavit, M.D. and Hajjar, J.F. (2012), "Nonlinear seismic analysis of circular concrete-filled steel tube members and frames", J. Struct. Eng., 138(9), 1089-1098. https://doi.org/10.1061/(asce)st.1943-541x.0000544.
  10. Ding, F.X., Wang, W.J., Lu, D.R. and Liu, X.M. (2020), "Study on the behavior of concrete-filled square double-skin steel tubular stub columns under axial loading", Struct., 23, 665-676. https://doi.org/10.1016/j.istruc.2019.12.008.
  11. Ding, F.X., Wang, W.J., Liu, X.M., Wang, L.P. and Yi, S. (2021), "Mechanical behavior of outer square inner circular concretefilled dual steel tubular stub columns", Steel Compos. Struct., 38(3), 305-317. https://doi.org/10.12989/scs.2021.38.3.305.
  12. Ding, F.X., Yin, G.A., Wang, L.P., Hu, D. and Chen, G.Q. (2017), "Seismic performance of a non-through-core concrete between concrete-filled steel tubular columns and reinforced concrete beams", Thin Wall. Struct., 110, 14-26. https://doi.org/10.1016/j.tws.2016.10.014.
  13. Ding, F.X., Ying, X.Y., Zhou, L.C. and Yu, Z.W. (2011), "Unified calculation method and its application in determining the uniaxial mechanical properties of concrete", Front. Arch. Civil Eng. Chin., 5(3), 381. https://doi.org/10.1007/s11709-011-0118-6.
  14. Duarte, A.P.C., Silvestre, N., de Brito, J. and Julio, E. (2021), "Computational modelling of the cyclic behaviour of short rubberized concrete-filled steel tubes", Eng. Struct., 248, 113188. https://doi.org/10.1016/j.engstruct.2021.113188.
  15. Fujii, K. and Dai, H. (2000), "Ultimate behavior of concrete filled steel tubular columns under horizontal cyclic loads", Composite Construction in Steel and Concrete IV, Banff, Alberta, Canada, May-June.
  16. Gajalakshmi, P. and Helena, H.J. (2012), "Behaviour of concretefilled steel columns subjected to lateral cyclic loading", J. Constr. Steel Res., 75, 55-63. https://doi.org/10.1016/j.jcsr.2012.03.006.
  17. Ge, H.B. and Kang, L. (2014), "Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading", Eng. Struct., 59, 809-820. https://doi.org/10.1016/j.engstruct.2013.12.006.
  18. Ge, H.B., Kang, L. and Tsumura, Y. (2013), "Extremely low-cycle fatigue tests of thick-walled steel bridge piers", J. Bridge Eng., 18(9), 858-870. https://doi.org/10.1061/(asce)be.1943-5592.0000429.
  19. Ge, H.B. and Usami, T. (1996), "Cyclic tests of concrete-filled steel box columns", J. Struct. Eng., 122(10), 1169-1177. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:10(1169).
  20. Goto, Y., Ebisawa, T. and Lu, X.L. (2014), "Local buckling restraining behavior of thin-walled circular CFT columns under seismic loads", J. Struct. Eng., 140(5), 04013105. https://doi.org/10.1061/(asce)st.1943-541x.0000904.
  21. Goto, Y., Ebisawa, T., Obata, M., Li, J.Z. and Xu, Y. (2017), "Ultimate behavior of steel and CFT piers in two-span continuous elevated-girder bridge models tested by shake-table excitations", J. Bridge Eng., 22(5), 04017001. https://doi.org/10.1061/(asce)be.1943-5592.0001021.
  22. Goto, Y., Kumar, G.P. and Kawanishi, N. (2010), "Nonlinear finite-element analysis for hysteretic behavior of thin-walled circular steel columns with in-filled concrete", J. Struct. Eng., 136(11), 1413-1422. https://doi.org/10.1061/(asce)st.1943-541x.0000240.
  23. Goto, Y., Mizuno, K. and Kumar, G.P. (2012), "Nonlinear finite element analysis for cyclic behavior of thin-walled stiffened rectangular steel columns with in-filled concrete", J. Struct. Eng., 138(5), 571-584. https://doi.org/10.1061/(asce)st.1943-541x.0000504.
  24. Goto, Y., Wang, Q.Y. and Obata, M. (1998), "FEM analysis for hysteretic behavior of thin-walled columns", J. Struct. Eng., 124(11), 1290-1301. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1290).
  25. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  26. Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete members externally confined with FRP sheets", Struct. Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167.
  27. Inai, E., Mukai, A., Kai, M., Tokinoya, H., Fukumoto, T. and Mori, K. (2004), "Behavior of concrete-filled steel tube beam columns", J. Struct. Eng., 130(2), 189-202. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(189).
  28. Jia, L.J., Ge, H.B., Maruyama, R. and Shinohara, K. (2017), "Development of a novel high-performance all-steel fish-bone shaped buckling-restrained brace", Eng. Struct., 138, 105-119. https://doi.org/10.1016/j.engstruct.2017.02.006.
  29. Johansson, M. and Gylltoft, K. (2001), "Structural behavior of slender circular steel-concrete composite columns under various means of load application", Steel Compos. Struct., 1(4), 393-410. https://doi.org/10.12989/scs.2001.1.4.393.
  30. Karimi, A., Nematzadeh, M. and Mohammad-Ebrahimzadeh- Sepasgozar, S. (2020), "Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber", Comput. Concrete, 26(6), 467-482. https://doi.org/10.12989/cac.2020.26.6.467.
  31. Le, T.T., Patel, V.I., Liang, Q.Q. and Huynh, P. (2021), "Numerical modeling of rectangular concrete- filled double -skin steel tubular columns with outer stainless-steel skin", J. Constr. Steel Res., 179(3), 106504. https://doi.org/10.1016/j.jcsr.2020.106504.
  32. Lehman, D., Roeder, C., Heid, A., Maki, T. and Khaleghi, B. (2018), "Shear response of concrete filled tubes part 1: Experiments", J. Constr. Steel Res., 150, 528-540. https://doi.org/10.1016/j.jcsr.2018.08.027.
  33. Lu, D.R., Wang, W.J., Ding, F.X., Liu, X.M. and Fang, C.J. (2021), "The impact of stirrups on the composite action of concrete-filled steel tubular stub columns under axial loading", Struct., 30(9), 786-802. https://doi.org/10.1016/j.istruc.2021.01.053.
  34. Lyu, F., Goto, Y., Kawanishi, N. and Xu, Y. (2020), "Threedimensional numerical model for seismic analysis of bridge systems with multiple thin-walled partially concrete-filled steel tubular columns", J. Struct. Eng., 146(1), 04019164. https://doi.org/10.1061/(asce)st.1943-541x.0002451.
  35. Ma, K.Z., Liang, X.W. and Li, B. (2010), "Aseismic behavior of high strength concrete-filled rectangular steel tubular columns with high axial load ratio", Eng. Mech., 27(3), 155-162. https://doi.org/10.3724/SP.J.1011.2010.01138.
  36. Mansouri, A. (2020), "Shear strength of concrete-filled steel tubes based on experimental results", J. Struct. Eng., 146(6), 04020097. https://doi.org/10.1061/(asce)st.1943-541x.0002646.
  37. Mansouri, A. (2021), "Development of a novel haunched link for eccentrically braced frames", Eng. Struct., 245, 112870. https://doi.org/10.1016/j.engstruct.2021.112870.
  38. Mansouri, A. and Moosavi, G. (2021), "Analytical study of the seismic performance of all-steel buckling-restrained braces with H-shaped cores", Can. J. Civil Eng., 48(5), 494-511. https://doi.org/10.1139/cjce-2019-0642.
  39. Mansouri, A. and Najafi, H. (2022), "Simplified shear force-chord rotation relationship for concrete-filled steel plate composite coupling beams", Struct., 35, 1-14. https://doi.org/10.1016/j.istruc.2021.10.084.
  40. Mansouri, A., Shakiba, M.R. and Fereshtehpour, E. (2021), "Two novel corrugated web reduced beam section connections for steel moment frames", J. Build. Eng., 43, 103187. https://doi.org/10.1016/j.jobe.2021.103187.
  41. Mansouri, A. and Sharif, M.M. (2022), "Development of a corrugated web shear link for steel moment-resisting frames", J. Constr. Steel Res., 193, 107281. https://doi.org/10.1016/j.jcsr.2022.107281.
  42. Marson, J. and Bruneau, M. (2004), "Cyclic testing of concretefilled circular steel bridge piers having encased fixed-based detail", J. Bridge Eng., 9(1), 14-23. https://doi.org/10.1061/(asce)1084-0702(2004)9:1(14).
  43. McClintock, F.A. (1968), "A criterion for ductile fracture by the growth of holes". J. Appl. Mech., 35(2), 363-371. https://doi.org/10.1115/1.3601204.
  44. Moghimi, H. and Driver, R.G. (2015), "Performance assessment of steel plate shear walls under accidental blast loads", J. Constr. Steel Res., 106, 44-56. https://doi.org/10.1016/j.jcsr.2014.11.010.
  45. Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722).
  46. Paygozar, B., Dizaji, S.A. and Sadigh, M.A.S. (2020), "Combined hardening parameters of steel CK45 under cyclic straincontrolled loading: Calibration methodology and numerical validation", J Mech. Eng. Sci., 14(2), 6848-6855. https://doi.org/10.15282/jmes.14.2.2020.24.0536.
  47. Rice, J.R. and Tracey, D.M. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solids, 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7.
  48. Sadowski, A.J. and Rotter, J.M. (2013), "Solid or shell finite elements to model thick cylindrical tubes and shells under global bending", Int. J. Mech. Sci., 74(13), 143-153. https://doi.org/10.1016/j.ijmecsci.2013.05.008.
  49. Shen, L., Ding, M., Feng, C.Y., Yang, B., Elchalakani, M. and Song, L.J. (2021), "Experimental study on the cumulative damage constitutive model of high-performance steel Q345GJ under cyclic loading", J. Constr. Steel Res., 181, 106620. https://doi.org/10.1016/j.jcsr.2021.106620.
  50. Shi, G., Wang, M., Bai, Y., Wang, F., Shi, Y.J. and Wang, Q.Y. (2012), "Experimental and modeling study of high-strength structural steel under cyclic loading", Eng. Struct., 37, 1-13. https://doi.org/10.1016/j.engstruct.2011.12.018.
  51. Skalomenos, K.A., Hayashi, K., Nishi, R., Inamasu, H. and Nakashima, M. (2016), "Experimental behavior of concretefilled steel tube columns using ultrahigh-strength steel", J. Struct. Eng., 142(9), 04016057. https://doi.org/10.1061/(asce)st.1943-541x.0001513.
  52. Smith, M. (2009), ABAQUS/Standard User's Manual, Version 6.9, Simulia, Providence, RI, USA.
  53. Sun, H., Ding, F.X., Wang, L.P., Lyu, F. and Li, B. (2023), "Experimental and analytical study of thin-walled stirrupconfined CFST piers under pseudo-static loading", J. Constr. Steel Res., 210, 108047. https://doi.org/10.1016/j.jcsr.2023.108047.
  54. Susantha, K.A.S., Ge, H.B. and Usami, T. (2002), "Cyclic analysis and capacity prediction of concrete-filled steel box columns", Earthq. Eng. Struct. Dyn., 31(2), 195-216. https://doi.org/10.1002/eqe.105.
  55. Usami, T., Ge, H.B. and Saizuka, K. (1997), "Behaviour of partially concrete-filled steel bridge piers under cyclic and dynamic loading", J. Constr. Steel Res., 41(2-3), 121-136. https://doi.org/10.1016/S0143-974X(97)00007-2.
  56. Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2004), "Seismic behavior and design of high-strength square concretefilled steel tube beam columns", J. Struct. Eng., 130(2), 169-179. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(169).
  57. Wang, J.T., Sun, Q., Wu, X.H and Wu, Y.C. (2019), "Experimental and analytical investigation on seismic behavior of Q690 circular high-strength concrete-filled thin-walled steel tubular columns", Struct. Des. Tall Spec. Build., 28(5), e1583.1-e1583.19. https://doi.org/10.1002/tal.1583.
  58. Wang, K., Chen, M., Zhang, R. and Fang, W. (2022), "Finite element simulation of load bearing capacity of circular CFST long columns with localized corrosion under eccentric load", Struct., 43, 1629-1642. https://doi.org/10.1016/j.istruc.2022.07.029.
  59. Wang, M., Qian, F.X., Yang , W.G. and Yang, L. (2017), "Comparison study on constitutive relationship of low yield point steels, Q345B steel and Q460D steel", J. Eng. Mech. 34(2), 60-68. https://doi.org/10.6052/j.issn.1000-4750.2016.01.0051.
  60. Wu, B., Zhao, X.Y., Zhang, J.S. and Yang, Y. (2013), "Cyclic testing of thin-walled circular steel tubular columns filled with demolished concrete blocks and fresh concrete", Thin Wall. Struct., 66, 50-61. https://doi.org/10.1016/j.tws.2013.01.008.
  61. Xiao, C., Cai, S., Chen, T. and Xu, C. (2012), "Experimental study on shear capacity of circular concrete filled steel tubes", Steel Compos. Struct., 13(5), 437-449. https://doi.org/10.12989/scs.2012.13.5.437.
  62. Xu, Q., Sun, H., Ding, F.X. and Lyu, F. (2023), "Analysis of ultimate seismic performance of thin-walled concrete-filled steel tube bridge piers under dynamic load", Eng. Struct., 292, 116544. https://doi.org/10.1016/j.engstruct.2023.116544.
  63. Xue, J.Y. and Ma, H. (2014), "Experimental study on seismic performance of steel reinforced recycled concrete columns under low-cyclic reversed loading", Chin. Civil Eng. J., 30(12), 123-131. https://doi.org/10.6052/j.issn.1000-4750.2012.08.0571.
  64. Xue, L. (2007), "Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading", Int. J. Solids Struct., 44(16), 5163-5181. https://doi.org/10.1016/j.ijsolstr.2006.12.026.
  65. Yang, H.C., Zhang, W., Zhuang, X.C. and Zhao, Z. (2020), "Calibration of Chaboche combined hardening model for large strain range", Proc. Manuf., 47, 867-872. https://doi.org/10.1016/j.promfg.2020.04.272
  66. Ye, Y., Han, L.H., Tao, Z. and Guo, S.L. (2016), "Experimental behaviour of concrete-filled steel tubular members under lateral shear loads", J. Constr. Steel Res., 122, 226-237. https://doi.org/10.1016/j.jcsr.2016.03.012.
  67. Yuan, H.H., Dang, J., Wu, Q.X. and Aoki, T. (2021), "A modified curve-approximated hysteretic model for partially concretefilled steel tube bridge piers", J. Constr. Steel Res., 185, 106861. https://doi.org/10.1016/j.jcsr.2021.106861.
  68. Yuan, H., Dang, J. and Aoki, T. (2014), "Behavior of partially concrete-filled steel tube bridge piers under bi-directional seismic excitations", J. Constr. Steel Res., 93, 44-54. https://doi.org/10.1016/j.jcsr.2013.10.022.
  69. Zhang, X.G. and Gao, X. (2019), "The hysteretic behavior of recycled aggregate concrete-filled square steel tube columns", Eng. Struct., 198, 109523. https://doi.org/10.1016/j.engstruct.2019.109523.
  70. Zhang, Y.C., Xu, C. and Lu, X.Z. (2007), "Experimental study of hysteretic behaviour for concrete-filled square thin-walled steel tubular columns", J. Constr. Steel Res., 63(3), 317-325. https://doi.org/10.1016/j.jcsr.2006.04.014.
  71. Zhi, X.D., Fan, F. and Shen, S.Z. (2008), "Application of material damage cumulation in reticulated shells under severe earthquakes", J. Harbin Inst. Technol., 40(2), 169-173. https://doi.org/10.1016/S1872-5791(08)60058-5.