• Title/Summary/Keyword: finite dimensional subspace

Search Result 27, Processing Time 0.025 seconds

A note on convexity on linear vector space

  • Hong, Suk-Kang
    • Journal of the Korean Statistical Society
    • /
    • v.1 no.1
    • /
    • pp.18-24
    • /
    • 1973
  • Study on convexity has been improved in many statistical fields, such as linear programming, stochastic inverntory problems and decision theory. In proof of main theorem in Section 3, M. Loeve already proved this theorem with the $r$-th absolute moments on page 160 in [1]. Main consideration is given to prove this theorem using convex theorems with the generalized $t$-th mean when some convex properties hold on a real linear vector space $R_N$, which satisfies all properties of finite dimensional Hilbert space. Throughout this paper $\b{x}_j, \b{y}_j$ where $j = 1,2,......,k,.....,N$, denotes the vectors on $R_N$, and $C_N$ also denotes a subspace of $R_N$.

  • PDF

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

CONTINUITY OF ONE-SIDED BEST SIMULTANEOUS APPROXIMATIONS

  • Lee, Mun-Bae;Park, Sung-Ho;Rhee, Hyang-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.743-753
    • /
    • 2000
  • In the space $C_1(X)$ of real-valued continuous functions with $L_1-norm$, every bounded set has a relative Chebyshev center in a finite-dimensional subspace S. Moreover, the set function $F\rightarrowZ_S(F)$ corresponding to F the set of its relative Chebyshev centers, in continuous on the space B[$C_1(X)$(X)] of nonempty bounded subsets of $C_1(X)$ (X) with the Hausdorff metric. In particular, every bounded set has a relative Chebyshev center in the closed convex set S(F) of S and the set function $F\rightarrowZ_S(F)$(F) is continuous on B[$C_1(X)$ (X)] with a condition that the sets S(.) are equal.

  • PDF

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Optimization of Data Recovery using Non-Linear Equalizer in Cellular Mobile Channel (셀룰라 이동통신 채널에서 비선형 등화기를 이용한 최적의 데이터 복원)

  • Choi, Sang-Ho;Ho, Kwang-Chun;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.1-7
    • /
    • 2001
  • In this paper, we have investigated the CDMA(Code Division Multiple Access) Cellular System with non-linear equalizer in reverse link channel. In general, due to unknown characteristics of channel in the wireless communication, the distribution of the observables cannot be specified by a finite set of parameters; instead, we partitioned the m-dimensional sample space Into a finite number of disjointed regions by using quantiles and a vector quantizer based on training samples. The algorithm proposed is based on a piecewise approximation to regression function based on quantiles and conditional partition moments which are estimated by Robbins Monro Stochastic Approximation (RMSA) algorithm. The resulting equalizers and detectors are robust in the sense that they are insensitive to variations in noise distributions. The main idea is that the robust equalizers and robust partition detectors yield better performance in equiprobably partitioned subspace of observations than the conventional equalizer in unpartitioned observation space under any condition. And also, we apply this idea to the CDMA system and analyze the BER performance.

  • PDF

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.

Seismic Response Prediction Method of Cabinet Structures in a Nuclear Power Plant Using Vibration Tests (진동시험을 이용한 원자력발전소 캐비닛 구조의 지진응답예측기법)

  • Koo, Ki-Young;Cui, Jintao;Cho, Sung-Gook;Kim, Doo-Kie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.57-63
    • /
    • 2008
  • This paper presents a seismic response prediction method using vibration tests of cabinet-type electrical equipment installed in a nuclear power plant. The proposed method consists of three steps: 1) identification of earthquake-equivalent forces based on lumped-mass system idealization, 2) identification of a state-space-equation model relating input-output measurements obtained from the vibration tests, 3) seismic prediction using the identified earthquake-equivalent forces and the identified state-space-equation. The proposed method is advantageous compared to other methods based on FEM (finite element method) model update, since the proposed method is not influenced by FEM modeling errors. Through a series of numerical verifications on a frame model and 3-dimensional shell model, it was found that the proposed method could be used to accurately predict the seismic responses, even under considerable measurement noise conditions. Experimental validation is needed for further study.