• Title/Summary/Keyword: finite/infinite type

Search Result 63, Processing Time 0.024 seconds

NON-FINITELY BASED FINITE INVOLUTION SEMIGROUPS WITH FINITELY BASED SEMIGROUP REDUCTS

  • Lee, Edmond W.H.
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.53-62
    • /
    • 2019
  • Recently, an infinite class of finitely based finite involution semigroups with non-finitely based semigroup reducts have been found. In contrast, only one example of the opposite type-non-finitely based finite involution semigroups with finitely based semigroup reducts-has so far been published. In the present article, a sufficient condition is established under which an involution semigroup is non-finitely based. This result is then applied to exhibit several examples of the desired opposite type.

ON THE RETRACTS AND RECODINGS OF CONTINUING CODES

  • YOO, JISANG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1375-1382
    • /
    • 2015
  • We investigate what happens when we try to work with continuing block codes (i.e., left or right continuing factor maps) between shift spaces that may not be shifts of finite type. For example, we demonstrate that continuing block codes on strictly sofic shifts do not behave as well as those on shifts of finite type; a continuing block code on a sofic shift need not have a uniformly bounded retract, unlike one on a shift of finite type. A right eresolving code on a sofic shift can display any behavior arbitrary block codes can have. We also show that a right continuing factor of a shift of finite type is always a shift of finite type.

2-LOCAL DERIVATIONS ON C*-ALGEBRAS

  • Wenbo Huang;Jiankui Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.813-823
    • /
    • 2024
  • In this paper, we prove that every 2-local derivation on several classes of C*-algebras, such as unital properly infinite, type I or residually finite-dimensional C*-algebras, is a derivation. We show that the following statements are equivalent: (1) every 2-local derivation on a C*-algebra is a derivation, (2) every 2-local derivation on a unital primitive antiliminal and no properly infinite C*-algebra is a derivation. We also show that every 2-local derivation on a group C*-algebra C*(𝔽) or a unital simple infinite-dimensional quasidiagonal C*-algebra, which is stable finite antiliminal C*-algebra, is a derivation.

SPANNING 3-FORESTS IN BRIDGES OF A TIGHT SEMIRING IN AN LV-GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1307-1318
    • /
    • 2009
  • An infinite locally finite plane graph is an LV-graph if it is 3-connected and VAP-free. In this paper, as a preparatory work for solving the problem concerning the existence of a spanning 3-tree in an LV-graph, we investigate the existence of a spanning 3-forest in a bridge of type 0,1 or 2 of a tight semi ring in an LV-graph satisfying certain conditions.

  • PDF

FIBREWISE INFINITE SYMMETRIC PRODUCTS AND M-CATEGORY

  • Hans, Scheerer;Manfred, Stelzer
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.671-682
    • /
    • 1999
  • Using a base-point free version of the infinite symmetric product we define a fibrewise infinite symmetric product for any fibration $E\;\longrightarrow\;B$. The construction works for any commutative ring R with unit and is denoted by $R_f(E)\;l\ongrightarrow\;B$. For any pointed space B let $G_I(B)\;\longrightarrow\;B$ be the i-th Ganea fibration. Defining $M_R-cat(B):= inf{i\midR_f(G_i(B))\longrihghtarrow\;B$ admits a section} we obtain an approximation to the Lusternik-Schnirelmann category of B which satisfies .g.a product formula. In particular, if B is a 1-connected rational space of finite rational type, then $M_Q$-cat(B) coincides with the well-known (purely algebraically defined) M-category of B which in fact is equal to cat (B) by a result of K.Hess. All the constructions more generally apply to the Ganea category of maps.

  • PDF

LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II

  • Jung, Seoung Dal
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.155-161
    • /
    • 2014
  • Let M be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that $Ric^M{\geq}-\frac{4(p-1)}{p^2}{\mu}_0$ at all $x{\in}M$ and Vol(M) is infinite, where ${\mu}_0$ > 0 is the infimum of the spectrum of the Laplacian acting on $L^2$-functions on M. Then any p-harmonic map ${\phi}:M{\rightarrow}N$ of finite p-energy is constant Also, we study Liouville type theorem for p-harmonic morphism.

Acoustic Field Analysis of Ultrasonic Focusing Transducer by Using Finite Element. Method and Hybrid Type Infinite Element Method (유한요소법과 하이브리드형 무한요소법을 이용한 초음파 집속변환자의 음장 해석)

  • Park, Soon-Jong;Yoon, Jong-Rak;Ha, Kang-Lyeol;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.36-43
    • /
    • 1995
  • This paper presents the lousing characteristics and the time. response of ultrasonic focusing transducer which is a coupled system with an electromechanical and an acoustical component. The Finite Element Method and the Hybrid Type Infinite Element Method are applied for the analysis. The position of the focal points and the resolutions is obtained from the loosing characteristics and the time response. It is found that the transducer with the damper, which stabilizes the displacement of the radiation surface, gives a better resolution. In conclusion, the results could be applied to the design and the performance analysis of the ultrasonic focusing transducer.

  • PDF

Calculation of Radiation Impedance for Piston Sources on a Spherical Baffle (구형 배플상의 피스톤 음원에 대한 방사임피던스 계산)

  • 박순종;김무준;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • The characteristics of radiation impedance for piston source on a spherical baffle are analyzed by algorithms which consists of Finite Element Method (FEM) and Hybrid type Infinite Element Method (HIEM). The results of self-radiation impedance for radiation angle and mutual radiation impedance between piston sources coincided with other reports on the spherical rigid baffle. For the spherical non-rigid baffles, the variations of self-radiation impedance and mutual-radiation impedance are identified. Therefore, these results can be applied to design and radiation characteristics analysis of acoustic transducers.

Acoustic Characteristics Analysis of the Axi-symmetric Transducer by the combined Finite Element Method and Hybrid Type Infinite Element Method, Part II : Wideband Array Transducer Design and its Acoustic Characteristics (유한요소법과 하이브리드형 무한요소법의 결합에 의한 축대칭 변환기의 음향 특성해석(II) ;광대역 배열 변환기의 설계 및 그 음향특성)

  • Kim, Chun-Duck;Kim, Won-Ho;Kim, Dae-Whan;Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.68-75
    • /
    • 1994
  • This is the second of two companion papers wich describes the wideband array transducer design procedure and the designed transducer acoustic characteristics. In addition, the result of the designed transducer acoustic characteristics by the combined Finite Element Method and Hybrid Type Infinite Element Method, is found to better than that by the equivalent circuit model method. Therefore, the technique presented in this paper could be applied in the design and the acoustic characteristics analysis of the wideband array transducer.

  • PDF

Lp-boundedness (1 ≤ p ≤ ∞) for Bergman Projection on a Class of Convex Domains of Infinite Type in ℂ2

  • Ly Kim Ha
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.413-424
    • /
    • 2023
  • The main purpose of this paper is to show that over a large class of bounded domains Ω ⊂ ℂ2, for 1 < p < ∞, the Bergman projection 𝓟 is bounded from Lp(Ω, dV ) to the Bergman space Ap(Ω); from L(Ω) to the holomorphic Bloch space BlHol(Ω); and from L1(Ω, P(z, z)dV) to the holomorphic Besov space Besov(Ω), where P(ζ, z) is the Bergman kernel for Ω.