DOI QR코드

DOI QR Code

LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II

  • Received : 2013.06.24
  • Published : 2014.01.31

Abstract

Let M be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that $Ric^M{\geq}-\frac{4(p-1)}{p^2}{\mu}_0$ at all $x{\in}M$ and Vol(M) is infinite, where ${\mu}_0$ > 0 is the infimum of the spectrum of the Laplacian acting on $L^2$-functions on M. Then any p-harmonic map ${\phi}:M{\rightarrow}N$ of finite p-energy is constant Also, we study Liouville type theorem for p-harmonic morphism.

Keywords

References

  1. P. Berard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), no. 3, 261-266. https://doi.org/10.1007/BF02567924
  2. G. Choi and G. Yun, A theorem of Liouville type for harmonic morphisms, Geom. Dedicata 84 (2001), no. 1-3, 179-182. https://doi.org/10.1023/A:1010329618346
  3. G. Choi and G. Yun, A theorem of Liouville type for p-harmonic morphisms, Geom. Dedicata 101 (2003), 55-59. https://doi.org/10.1023/A:1026343820908
  4. B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 2, 107-144.
  5. S. D. Jung, Harmonic maps of complete Riemannian manifolds, Nihonkai Math. J. 8 (1997), no. 2, 147-154.
  6. S. D. Jung, D. J. Moon, and H. Liu, A Liouville type theorem for harmonic morphisms, J. Korean Math. Soc. 44 (2007), no. 4, 941-947. https://doi.org/10.4134/JKMS.2007.44.4.941
  7. A. Kasue and T. Washio, Growth of equivariant harmonic maps and harmonic morphisms, Osaka J. Math. 27 (1990), no. 4, 899-928.
  8. E. Loubeau, On p-harmonic morphisms, Differential Geom. Appl. 12 (2000), no. 3, 219-229. https://doi.org/10.1016/S0926-2245(00)00013-9
  9. D. J. Moon, H. Liu, and S. D. Jung, Liouville type theorems for p-harmonic maps, J. Math. Anal. Appl. 342 (2008), no. 1, 354-360. https://doi.org/10.1016/j.jmaa.2007.12.018
  10. N. Nakauchi, A Liouville type theorem for p-harmonic maps, Osaka J. Math. 35 (1998), no. 2, 303-312.
  11. N. Nakauchi and S. Takakuwa, A remark on p-harmonic maps, Nonlinear Anal. 25 (1995), no. 2, 169-185. https://doi.org/10.1016/0362-546X(94)00225-7
  12. R. M. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), no. 3, 333-341. https://doi.org/10.1007/BF02568161
  13. H. Takeuchi, Stability and Liouville theorems of p-harmonic maps, Japan. J. Math. (N.S.) 17 (1991), no. 2, 317-332. https://doi.org/10.4099/math1924.17.317
  14. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. https://doi.org/10.1002/cpa.3160280203
  15. S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670. https://doi.org/10.1512/iumj.1976.25.25051
  16. H. H. Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, 289-538.