KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.2
/
pp.522-539
/
2021
In order to solve the problems of the existing audio fingerprint method when extracting audio fingerprints from long speech segments, such as too large fingerprint dimension, poor robustness, and low retrieval accuracy and efficiency, a robust audio fingerprint retrieval method based on feature dimension reduction and feature combination is proposed. Firstly, the Mel-frequency cepstral coefficient (MFCC) and linear prediction cepstrum coefficient (LPCC) of the original speech are extracted respectively, and the MFCC feature matrix and LPCC feature matrix are combined. Secondly, the feature dimension reduction method based on information entropy is used for column dimension reduction, and the feature matrix after dimension reduction is used for row dimension reduction based on energy feature dimension reduction method. Finally, the audio fingerprint is constructed by using the feature combination matrix after dimension reduction. When speech's user retrieval, the normalized Hamming distance algorithm is used for matching retrieval. Experiment results show that the proposed method has smaller audio fingerprint dimension and better robustness for long speech segments, and has higher retrieval efficiency while maintaining a higher recall rate and precision rate.
This paper proposes the method to extract a binary audio fingerprint by combining several base binary fingerprints. Based on majority voting of base fingerprints, which are designed by mimicking the fingerprint used in Philips fingerprinting system, the proposed fingerprint is determined. In the matching part, the base fingerprints are extracted from the query, and distance is computed using the sum of them. In the experiments, the proposed fingerprint outperforms the base binary fingerprints. The method can be used for enhancing the existing binary fingerprint or for designing a new fingerprint.
The Journal of Korean Institute of Communications and Information Sciences
/
v.42
no.2
/
pp.536-544
/
2017
Wireless RSSI (Received Signal Strength Indication) fingerprinting is one of the most popular methods for indoor positioning as it provides reasonable accuracy while being able to exploit existing wireless infrastructure. However, the process of radio map construction (aka fingerprint calibration) is laborious and time consuming as precise physical coordinates and wireless signals have to be measured at multiple locations of target environment. This paper proposes a method to build the map from a combination of RSSIs without location information collected in a crowdsourcing fashion, and a handful of labeled RSSIs using a semi-supervised self organizing map learning algorithm. Experiment on simulated data shows promising results as the method is able to recover the full map effectively with only 1% RSSI samples from the fingerprint database.
Thereby using smartphone and mobile device be more popular the more people utilize mobile device in many area such as education, news, financial. In January, 2007 Apple release i-phone it touch off rapid increasing in user of smartphone and it create new market and these broaden its utilization area. Smartphone use WiFi or 3G mobile radio communication network and it has a feature that can access to internet whenever and anywhere. Also using smartphone application people can search arrival time of public transportation in real time and application is used in mobile banking and stock trading. Computer's function is replaced by smartphone so it involves important user's information such as financial and personal pictures, videos. Present smartphone security systems are not only too simple but the unlocking methods are spreading out covertly. I-phone is secured by using combination of number and character but USA's IT magazine Engadget reveal that it is easily unlocked by using combination with some part of number pad and buttons Android operation system is using pattern system and it is known as using 9 point dot so user can utilize various variable but according to Jonathan smith professor of University of Pennsylvania Android security system is easily unlocked by tracing fingerprint which remains on the smartphone screen. So both of Android and I-phone OS are vulnerable at security threat. Compared with problem of password and pattern finger recognition has advantage in security and possibility of loss. The reason why current using finger recognition smart phone, and device are not so popular is that there are many problem: not providing reasonable price, breaching human rights. In addition, finger recognition sensor is not providing reasonable price to customers but through continuous development of the smartphone and device, it will be more miniaturized and its price will fall. So once utilization of finger recognition is actively used in smartphone and if its utilization area broaden to financial transaction. Utilization of biometrics in smart device will be debated briskly. So in this thesis we will propose fingerprint numbering system which is combined fingerprint and password to fortify existing fingerprint recognition. Consisted by 4 number of password has this kind of problem so we will replace existing 4number password and pattern system and consolidate with fingerprint recognition and password reinforce security. In original fingerprint recognition system there is only 10 numbers of cases but if numbering to fingerprint we can consist of a password as a new method. Using proposed method user enter fingerprint as invested number to the finger. So attacker will have difficulty to collect all kind of fingerprint to forge and infer user's password. After fingerprint numbering, system can use the method of recognization of entering several fingerprint at the same time or enter fingerprint in regular sequence. In this thesis we adapt entering fingerprint in regular sequence and if in this system allow duplication when entering fingerprint. In case of allowing duplication a number of possible combinations is $\sum_{I=1}^{10}\;{_{10}P_i}$ and its total cases of number is 9,864,100. So by this method user retain security the other hand attacker will have a number of difficulties to conjecture and it is needed to obtain user's fingerprint thus this system will enhance user's security. This system is method not accept only one fingerprint but accept multiple finger in regular sequence. In this thesis we introduce the method in the environment of smartphone by using multiple numbered fingerprint enter to authorize user. Present smartphone authorization using pattern and password and fingerprint are exposed to high risk so if proposed system overcome delay time when user enter their finger to recognition device and relate to other biometric method it will have more concrete security. The problem should be solved after this research is reducing fingerprint's numbering time and hardware development should be preceded. If in the future using fingerprint public certification becomes popular. The fingerprint recognition in the smartphone will become important security issue so this thesis will utilize to fortify fingerprint recognition research.
Journal of the Korea Institute of Information Security & Cryptology
/
v.19
no.1
/
pp.63-70
/
2009
Recently, in the security token based authentication system, there is an increasing trend of using fingerprint for the token holder verification, instead of passwords. However, the security of the fingerprint data is particularly important as the possible compromise of the data will be permanent. In this paper, we propose an approach for secure fingerprint verification by distributing both the secret and the computation based on the fuzzy vault(a cryptographic construct which has been proposed for crypto-biometric systems). That is, a user fingerprint template which is applied to the fuzzy vault is divided into two parts, and each part is stored into a security token and a server, respectively. At distributing the fingerprint template, we consider both the security level and the verification accuracy. Then, the geometric hashing technique is applied to solve the fingerprint alignment problem, and this computation is also distributed over the combination of the security token and the server in the form of the challenge-response. Finally, the polynomial can be reconstructed from the accumulated real points from both the security token and the server. Based on the experimental results, we confirm that our proposed approach can perform the fuzzy vault-based fingerprint verification more securely on a combination of a security token and a server without significant degradation of the verification accuracy.
Journal of the Korea Society of Computer and Information
/
v.8
no.4
/
pp.63-68
/
2003
Almost the system are usually taken by means of shapes and positions of ridge's end-points and bifurcation in the fingerprint recognition. but we studied about recognition of polluted fingerprint by chain code ridges. the results and sequence of processing are summarized as follows. (1)Capture several kinds of polluted fingerprint image. (2)Preprocessing(median filtering for removing noises, local and global histogram equalization, dilation and erosion, thinning and remove pseudo image), (3)Rebuild ridge line after Least Square Processing, (4)Compute distribution of chain code vector, (5)The results are almost same values of each vector of preprocessed fingerprint images. From the results, we can surmised more successful fingerprints recognition system in combination with other system by singular points
The construction of a fingerprint database is important to evaluate the performance of an automatic fingerprint recognition system. Due to the cost of collecting fingerprints, there are only few benchmark databases available. Since it is hard to evaluate how robust the system is in various environments with the databases, this paper proposes a novel method that generates fingerprint images automatically from only a few training samples by using the genetic algorithm. Fingerprints generated by the proposed method include similar characteristics of those collected from the corresponding real environment. The proposed method has been verified by comparing with real fingerprint images, showing the usefulness of the method.
In this work a Discrete Cosine Transform (DCT)-based feature dimensionality reduced approach for fingerprint matching is proposed. The DCT is applied on a small region around the core point of fingerprint image. The performance of our proposed method is evaluated on a small database of Bologna University and two large databases of FVC2000. A dimensionally reduced feature vector is formed using only approximately 19%, 7%, and 6% DCT coefficients for the three databases from Bologna University and FVC2000, respectively. We compared the results of our proposed method with the discrete wavelet transform (DWT) method, the rotated wavelet filters (RWFs) method, and a combination of DWT+RWF and DWT+(HL+LH) subbands of RWF. The proposed method reduces the false acceptance rate from approximately 18% to 4% on DB1 (Database of Bologna University), approximately 29% to 16% on DB2 (FVC2000), and approximately 26% to 17% on DB3 (FVC2000) over the DWT based feature extraction method.
In this paper, we propose a novel fingerprint classification method to enhance the accuracy and efficiency of the fingerprint identification system, one of biometrics systems. According to the previous researches, fingerprints can be categorized into the several patterns based on their pattern of ridges and valleys. After construction of fingerprint database based on their patters, fingerprint classification approach can help to accelerate the fingerprint recognition. The reason is that classification methods reduce the size of the search space to the fingerprints of the same category before matching. First, we suggest a method to extract region of interest (ROI) which have real information about fingerprint from the image. And then we propose a feature extraction method which combines gray level co-occurrence matrix (GLCM) and wavelet features. Finally, we compare the performance of our proposed method with the existing method which use only GLCM as the feature of fingerprint by using the multi-layer perceptron and support vector machine.
Fingerprint classification is useful in an automated fingerprint identification system (AFIS) to reduce the matching time by categorizing fingerprints. Based on Henry system that classifies fingerprints into S classes, various techniques such as neural networks and support vector machines (SVMs) have been widely used to classify fingerprints. Especially, SVMs of high classification performance have been actively investigated. Since the SVM is binary classifier, we propose a novel classifier-combination model, multiple decision templates (MuDTs), to classily fingerprints. The method extracts several clusters of different characteristics from samples of a class and constructs a suitable combination model to overcome the restriction of the single model, which may be subject to the ambiguous images. With the experimental results of the proposed on the FingerCodes extracted from NIST Database4 for the five-class and four-class problems, we have achieved a classification accuracy of $90.4\%\;and\;94.9\%\;with\;1.8\%$ rejection, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.