• Title/Summary/Keyword: fineness of cement

Search Result 151, Processing Time 0.022 seconds

Influences of Quality of Aggregate on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용한 바닥 모르타르의 특성에 미치는 골재품질의 영향)

  • 송명신;표대수;정성철;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.929-932
    • /
    • 2000
  • In this paper, physical properties of fresh and hardened mortar for floor using expansion agent are described under various grain shape, grading and chloride contents of aggregates. According to experimental results, as fineness modulous increase, fluidity show high it also shows high with cement mortar using riversand and continuous distribution of grading. We can not detect any difference in fluidity according to chloride contents. Air content shows to be decreased with crushed stone having large fineness modulous and continuous distribute on of grading. chloride content does not influence on the air content. compressive strength tends to increase when crushed sand with continuous distribution of grading is used and chloride contents decreases.

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade) (저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가)

  • Lee, Seung-Heun;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.96-102
    • /
    • 2019
  • When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.

Effect of limestone powder replacement ratio and fineness on high temperature mechanical properties of concrete (석회석 미분말 혼입량과 분말도가 콘크리트의 고온 역학적 특성에 미치는 영향)

  • Choi, Youn sung;Kim, Gyu Yong;Eu, Ha Min;Lee, Yae Chan;Suh, Dong Kyun;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.271-272
    • /
    • 2023
  • In this study, limestone powder used to replace cement at a weight ratio of 10%, 15%, and 20% was tested at 3000, 4000, and 5000 levels of fineness. The mechanical properties of the concrete were investigated before and after exposure to high temperatures (100, 300, and 500℃), and the effects of limestone powder fineness and replacement ratio on the mechanical properties of the concrete were analyzed.

  • PDF

An Experimental Study on the Rheological Properties of the Combined Self-Compacting Concrete by Quality Variations (품질변동에 따른 병용계 자기충전 콘크리트의 유동특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2014
  • The purpose of this study is to investigate experimentally the variation factors range having influence on the rheological properties of the combined self-compacting concrete according to materials quality, weighting error and site conditions. Two types cement (blast-furnace slag cement and belite cement), lime stone powder as binder and the optimum mix proportions in the preceded study are selected for this study. Also, variations for sensitivity test are as followings; (1) Concrete temperature 3 cases (2) Surface moisture of sand 5cases (3) Fineness modulus of sand 5cases (4) Specific surface of lime stone powder 3cases (5) Dosage of chemical admixture 5cases. Slump flow ($650{\pm}50mm$), 500 mm reaching time (($7{\pm}3sec$), V-type flowing time ($15{\pm}5sec$) and U-box height (min. 300 mm) are tested for sensitivity. As test results, the variations range for quality control are as followings. (1) Concrete temperature; $10{\sim}20^{\circ}C$(below $30^{\circ}C$) (2) Surface moisture of sand; $base{\pm}0.6%$ (3) Fineness modulus of sand; $2.6{\pm}0.2$ (4) Dosage of chemical admixture; $base{\pm}0.2%$ (5) Specific surface of lime stone powder $6000cm^2/g$. Compared with two types cement including based belite cement (binary type) and based slag cement (ternary type), the combined self-compacting concrete used belite cement type is most stable in the quality control because of high contents for lime stone powder and $C_2S$. It is to propose a control scheme of the combined self-compacting concrete in the actual construction work.

A Study on the Sound Absorption Properties of Cellular Concrete with Continuous voids (연속공극을 갖는 기포콘크리트의 흡음특성에 관한 연구)

  • Lee, Seung-Han;Jung, Yong-Wook;Park, Jung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.566-573
    • /
    • 2003
  • This study was performed to manufacture a rigid sound absorbing material by increasing the continuous void ratio of cellular concrete, thereby achieving an increase in sound absorption ratio and an enhancement in strength of the cellular concrete. By the experiments, it was determined that an increase in sound absorption ratio is achieved by increasing the added amount of air voids, thereby increasing the continuous void ratio. When the material had a thickness of 5 cm, a satisfactory average sound absorption ratio of 70% was obtained at a continuous void ratio of 40% or more. An increase in the thickness of the sound absorbing material resulted in an increase in sound absorption ratio in a super bass range. The specific gravity of cellular concrete meeting an average sound absorption ratio of 70% was 0.4 at a material thickness of 5 cm, and 0.6 or less at a material thickness of 7 cm. The compressive strength of the cellular concrete having a specific gravity of 0.4 meeting an average sound absorption ratio of 70% or more was 1.37 Mpa at a cement fineness of 3,000. This compressive strength was increased to 3.34 MPa at a cement fineness of 8,000. Accordingly, it was determined that the compressive strength of cellular concrete having continuous voids increases with a higher cement fineness.

Effect of fineness of high lime fly ash on pozzolanic reactivity and ASR mitigation

  • Afshinnia, Kaveh;Rangaraju, Prasada R.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2017
  • Typically, high lime fly ash (Class C) has been characterized as a fly ash, which at lower replacement levels is not as effective as the low lime (Class F) fly ash, in mitigating alkali-silica reaction (ASR) in portland cement concrete. The influence of fineness of Class C, obtained by grinding virgin fly ash into finer particles, on its pozzolanic reactivity and ASR mitigation performance was investigated in this study. In order to assess the pozzolanic reactivity of mortar mixtures containing virgin or ground fly ashes, the strength activity index (SAI) test and thermo-gravimetric analysis (TGA) were conducted on the mortar cubes and paste samples, respectively, containing virgin fly ash or two ground fly ashes. In addition, to evaluate any improvement in the ASR mitigation of ground fly ashes compared to that of the virgin fly ash, the accelerated mortar bar test (AMBT) was conducted on the mortar mixtures containing different dosages of either virgin or ground fly ashes. In all tests crushed glass aggregate was used as a highly reactive aggregate. Results from this study showed that the finest fly ash (i.e., with an average particle size of 3.1 microns) could increase the flow ability along with the pozzolanic reactivity of the mortar mixture. However, results from this study suggested that the fineness of high lime fly ash does not seem to have any significant effect on ASR mitigation.

A Study on the Basic Properties of Cement Mortar Using Limestone Powder (석회석 미분말을 사용한 시멘트 모르타르의 기초특성에 관한 연구)

  • Kang, In-Gyu;La, Jung-Min;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.19-20
    • /
    • 2022
  • Portland Limestone Cement (PLC) is a blended cement using limestone powder as SCMs (Supplementary Cementitious Materials), and is currently regarded as an essential means for achieving carbon neutral in the cement industry. This study was performed to investigate the fresh and hardened properties of cement mortar according to the fineness and replacement ratio of limestone powder. As a result, the compressive strength of mortar used high blaine limestone powder were equivalent level of that of OPC.

  • PDF

Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete (콘크리트의 강도 및 내구성에 대한 고로슬래그미분말 분말도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1095-1104
    • /
    • 2014
  • This paper presents the results of experimental work on both strength characteristics and durability of concrete or mortar having 50% ground granulate blastfurnace slag(GBS) with different fineness levels (4,450, 6,000 and $8,000cm^2/g$). Compressive and split tensile strength test results indicated that the concrete with a higher fineness level of GBS exhibited a better strength development due to the acceleration of latent hydraulic property at the later curing stage compared with ordinary portland cement concrete. Meanwhile, it was found that a higher fineness level of GBS showed some negative effects on the resistance against freezing-thawing action. However, incorporation of GBS to concrete, irrespective of fineness levels, significantly enhanced the chloride ions penetration resistance. The resistance against sulfate attack of mortar with GBS was greatly dependent on the attacking sources from sulfate environments.

An advanced machine learning technique to predict compressive strength of green concrete incorporating waste foundry sand

  • Danial Jahed Armaghani;Haleh Rasekh;Panagiotis G. Asteris
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • Waste foundry sand (WFS) is the waste product that cause environmental hazards. WFS can be used as a partial replacement of cement or fine aggregates in concrete. A database comprising 234 compressive strength tests of concrete fabricated with WFS is used. To construct the machine learning-based prediction models, the water-to-cement ratio, WFS replacement percentage, WFS-to-cement content ratio, and fineness modulus of WFS were considered as the model's inputs, and the compressive strength of concrete is set as the model's output. A base extreme gradient boosting (XGBoost) model together with two hybrid XGBoost models mixed with the tunicate swarm algorithm (TSA) and the salp swarm algorithm (SSA) were applied. The role of TSA and SSA is to identify the optimum values of XGBoost hyperparameters to obtain the higher performance. The results of these hybrid techniques were compared with the results of the base XGBoost model in order to investigate and justify the implementation of optimisation algorithms. The results showed that the hybrid XGBoost models are faster and more accurate compared to the base XGBoost technique. The XGBoost-SSA model shows superior performance compared to previously published works in the literature, offering a reduced system error rate. Although the WFS-to-cement ratio is significant, the WFS replacement percentage has a smaller influence on the compressive strength of concrete. To improve the compressive strength of concrete fabricated with WFS, the simultaneous consideration of the water-to-cement ratio and fineness modulus of WFS is recommended.

Characterization of seasonal variation according to the quality of cement (계절변화에 따른 시멘트 품질 특성 분석)

  • Park, Hee-Gon;Lee, Ji-Hwan;Seo, Il;Lee, Jin-Woo;Kim, Woo-Jae;Lee, Jae-Sam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.211-212
    • /
    • 2012
  • Over the years, the recovery of the domestic construction market, which does not appear on the reverse, but rather due to a surge of construction materials cost of the construction sector is experiencing greater difficulties. Cement raw materials in the manufacturing process, if some of the waste recycling, cites quality control for products and measures for the thorough management is needed. In this study, three companies of the past four years in the production of cement against doejin physical performance test results conducted yearly and seasonal trends by analyzing changes in the years to review the cement for cement to utilize as a basis for management points is.

  • PDF