DOI QR코드

DOI QR Code

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade)

저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가

  • 이승헌 (군산대학교 신소재공학과) ;
  • 조성준 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2019.02.21
  • Accepted : 2019.05.27
  • Published : 2019.07.01

Abstract

When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.

고분말도 슬래그를 사용할 경우 초기재령에서의 강도발현은 우수하나 수화열 및 품질관리에 따른 문제가 발생하기 쉽다. 본 연구에서는 3000급 저분말도의 고로슬래그 미분말을 혼입한 콘크리트의 강도특성 및 내구특성을 분석하였다. 작업성을 기준으로 3가지 배합을 고려하였으며, 압축강도와 내구특성시험이 수행되었다. 강도특성 결과 3000급 슬래그를 혼입한 콘크리트는 28일 재령에서 OPC(Ordinary Portland Cement) 배합 대비 강도가 떨어지지만 장기재령에서는 잠재수경성의 촉진으로 인하여 큰 차이가 나타나지 않았다. 탄산화 및 동결융해 실험에서는 4200급 슬래그 배합 대비 약간 우수한 저항성능이 나타났는데, 이는 동일 슬럼프를 목표로 배합을 진행하여 3000급 슬래그 배합에 단위수량을 적게 고려하였기 때문이다. 장기재령의 경우, 3000급 슬래그 배합의 염화물확산계수는 OPC 배합 대비20% 수준으로 감소하여 우수한 내염해특성이 평가되었다. 단위수량을 조정하고 3000급 저분말도의 고로슬래그 미분말을 혼입하여 사용할 경우, 기존 분말도의 슬래그가 사용된 콘크리트 및 OPC 콘크리트와 비교시 우수한 작업성능과 내구특성을 확보할 수 있을 것으로 판단된다.

Keywords

References

  1. American Concrete Institute Committee-201 (2008), Guide to Durable Concrete; ACI 201R-08; American Concrete Institute (ACI): Detroit, MI, USA.
  2. Babu, K. and Kumar, V. S. R. (2000) Efficiency of GGBS in concrete, Cem. Concr, Res, 30(7), 1031-1036. https://doi.org/10.1016/S0008-8846(00)00271-4
  3. Broomfield, J. P. (1997) Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1-15.
  4. BS 6699:1992. (1992) Specification for ground granulated blastfurnace slag for use with Portland cement, British Standard.
  5. Han, C. G. and Kim, J. B. (2011) Evaluation on the Durability of High Performance Concrete using High Blaine Blast Furnace Slag Powder, Journal of the Architectural Institute of Korea Structure and Construction, 27(11), 135-142.
  6. Han, C. G., Kim, S. H. and Son, H. J. (2009) Engineering Characteristics Analysis of High Strength Concrete Followed in replacement ratio increase in Blast Furnace Slag, Journal of the Korean Recycled Construction Resources Institute, 4(3), 62-68.
  7. Hong, S. I., Kim, Y. J. and Ann, K. Y. (2017) Durability Evaluation of Ternary Blended Concrete Structures Under Chloride-laden Environment, Journal of Korea Concrete Institute, 29(5), 493-498. https://doi.org/10.4334/JKCI.2017.29.5.493
  8. Ishida, T., Maekawa, K. (2000). Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory, Concrete Library of JSCE, 2000(37), 203-215.
  9. Ishida T., Chaube R. P., Kishi, T. and Maekawa, K. (1997) Modeling of pore content in concrete under generic drying wetting conditions, Concrete Liberary of JSCE, 564(35), 275-287.
  10. Jeong, J. Y., Jang, S. Y., Choi, Y. C., Jung, S. H. and Kim, S. I. (2015) Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes, Journal of the Korea Concrete Institute, 27(2), 115-125. https://doi.org/10.4334/JKCI.2015.27.2.115
  11. JIS A 6206:2013. (2013) Ground granulated blast-furnace slag for concrete, Japanese Standards Association.
  12. Kim, J. H., Jeong, J. Y., Jang, S. Y., Jung, S. H. and Kim, S. I. (2015) Strength Development and Durability of High-Strength High-Volume GGBFS Concrete, Journal of the Korean Recycled Construction Resources Institute, 3(3), 261-267. https://doi.org/10.14190/JRCR.2015.3.3.261
  13. Kim, S. S. (2001) Environment of Deterioration in Reinforced Concrete Structure, Journal of Korea Concrete Institute, 2001(11), 3-17.
  14. Kwon, S. J., Park, S. S., Lee, S. M. and Kim, J. H. (2007) A Study on Durability Improvement for Concrete Structures Using Surface Impregnant, Magazine of the Korea Institute for Structural Maintenance and Inspection, 11(4), 79-88.
  15. Lee, D. H. (2003) Investigation on the Resistance of Chloride Penetration of Concrete mixed with Granulated Blast Furnace Slag, Seoul National University of Science and Technology Master Thesis, 72-73.
  16. Lee, H. H. and Kwon, S. J. (2013) Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag considering Fineness and Replacement Ratio, Journal of the Korean Recycled Construction Resources Institute, 1(1), 26-34. https://doi.org/10.14190/JRCR.2013.1.1.026
  17. Lee, S. H., Kim, W. K. and Kang, S. H. (2012) Hydration mechanism of ground granulated blast furnace slag, Journal of Korea Concrete Institute, 24(6), 31-34.
  18. Lee, S. T. (2014) Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete, Journal of the Korean Society of Civil Engineers, 34(4), 1095-1104. https://doi.org/10.12652/Ksce.2014.34.4.1095
  19. Lee, S. T. and Park, K. P. (2018) Resistance to Freezing and Thawing of Concrete Subjected to Carbonation, Journal of the Korea Academia-Industrial cooperation Society, 19(2), 623-631. https://doi.org/10.5762/KAIS.2018.19.2.623
  20. Mun, J. M. and Kwon, S. J. (2016) Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions, Journal of Korea Concrete Institute, 28(4), 481-488. https://doi.org/10.4334/JKCI.2016.28.4.481
  21. Nordine, L., Van, H. N. and Pierre M. (2016) The effect of the partial cement substitution with fly ash on Delayed Ettringite Formation in heat-cured mortars, Journal of Civil Engineering, 21(4), 1359-1366.
  22. Ortega, J. M., Sanchez, I. and Climent, M. A. (2012) Durability related transport properties of OPC and slag cement mortars hardened under different environmental condition, Constr. Build. Mater, 27(1), 176-183. https://doi.org/10.1016/j.conbuildmat.2011.07.064
  23. Park, J. S., Kim, Y. J., Cho, J. R. and Jeon, S. J. (2013) Characteristics of Strength Development of Ultra-High Performance Concrete according to Curing Condition, Journal of Korea Concrete Institute, 25(3), 295-304. https://doi.org/10.4334/JKCI.2013.25.3.295
  24. Park, J. S., Yoon, Y. S., and Kwon, S. J. (2018) Relations Analysis between Strength and Time-parameter in High Performance Concrete Containing GGBFS Cured for 1 year, Journal of Korea Concrete Institute, 30(4), 375-381. https://doi.org/10.4334/JKCI.2018.30.4.375
  25. Park, J. S., Park, S. M., Kim, H. J. and Kwon, S. J. (2016) Evaluation of Engineering Properties in Early-Age Concrete with TDFA, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(5), 1-8. https://doi.org/10.11112/jksmi.2016.20.5.001
  26. Rajamurugan, S., Koji M., Kohei N. and Anupam A. (2018) Visual investigation method and structural performance evaluation for DEF induced damaged Indian Railway Pcsleepers, Journal of Asian Concrete Federation, 4(2), 103-115. https://doi.org/10.18702/acf.2019.1.4.2.103
  27. RILEM. (1994) Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 28-52.
  28. Song, H. W. and Kwon, S. J. (2007) Permeability characteristics of carbonated conecrete considering capillary pore structure, Cement and Concrete Research, 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
  29. Yoon, I. S., Kim, E. K. and Lee, C. S. (2007) Material Modeling of Concrete for Chloride Diffusivity Considering Carbonation of Concrete, Journal of the Korean Society of Civil Engineers, 27(4), 617-625.
  30. Yoon, Y. S. and Kwon, S. J. (2018) Evaluation of Time-Dependent Chloride Resistance in HPC Containing Fly Ash Cured for 1 Year, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 52-59. https://doi.org/10.11112/JKSMI.2018.22.4.052
  31. Jeong, J. Y., Jang, S. Y., Choi, Y. C., Jung, S. H., and Kim, S. I. (2015) Effects of Replacement Ratio and Fineness of GGBFS on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Pastes, Journal of the Korea Concrete Institute, 27(2), 115-125. https://doi.org/10.4334/JKCI.2015.27.2.115