• Title/Summary/Keyword: fine powders

Search Result 493, Processing Time 0.029 seconds

Characteristics of Pre-alloyed Powders for Diamond Tools

  • Luo, Xi-Yu;Ma, Hong-Qiu;Kuang, Xing;Huang, Man;Tang, Ming-Qiang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1144-1145
    • /
    • 2006
  • In this paper, the fundamental attributes, phase composition of three pre-alloyed powders for diamond tools by water atomization were investigated. The density, hardness, bend strength and bending modulus of their hot pressing samples were examined. The results showed that the three pre-alloyed powders have excellent low temperature sintering characteristics. The physical and mechanical properties of the samples were found to be nearly the same as those of fine cobalt powders.

  • PDF

Fabrication of Ultra-Fine TiO$_2$ Powders Using Supercritical Fluid (초임계 유체를 이용한 초미립 TiO$_2$ 제조)

  • 송정환;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1049-1054
    • /
    • 1998
  • In order to fabricate ideal powders new processing is necessary in which the solute atoms in solution ra-pidly move to mix each other to the degree of molecular level the viscosity of solution should be low not to effect the moving of solute atoms and the powders could be directly obtained as crystalline. Supercritical fluid is defined as condensed gas sated up to its critical pressure and temperature. In this paper su-percritical fluid methods were studied as a new ceramic processing of powder preparation. The crystalline powders of TiO2 which are useful for electronic ceramic materials were fabricated by hydrolysis of titanium (IV) ethoxide using ethanol as a supercritical fluid at the condition of 270$\pm$3$^{\circ}C$, 7.3 MPa for 2hr. The cry stalline anatase powders could be directly obtained and its primary particle size was 20 min.

  • PDF

Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy (Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계)

  • Jin Uk Gwon;Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Preparation of SiO2/TiO2 Composite Fine Powder by Sol-Gel Process (Sol-Gel Process를 이용한 SiO2/TiO2 복합 미립자의 합성)

  • Koo, S.M.;Lee, D.H.;Ryu, C.S.;Lee, Y.E.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.301-307
    • /
    • 1997
  • Monodisperse, spherical $SiO_2/TiO_2$ composite fine powders were prepared by modified Sol-Gel process which $TiO_2$ fine Powders was used as a seed particles for condensation of TEOS (Tetraethyl Orthosilicate). The reaction was carried out under $N_2$ atmosphere at ambient temperature using $NH_3$ as a catalyst. Ethanol was used as a solvent. Drying process was carried out with vacuum trap which cooled by liquid $N_2$. The reaction variables were the concentration of TEOS, the concentration of ammonia, the size of $TiO_2$ seed and molar ratio of $SiO_2/TiO_2$. The optimum condition for the preparation of $SiO_2/TiO_2$ composite fine powders without agglomeration was [TEOS]=0.3M, [$NH_3$]=0.7M, size of $SiO_2/TiO_2$ seed = 200~300nm.

  • PDF

Formation of SiC Particle Reinforced Al Metal Matrix Composites by Spray Forming Process(I. Microstructure) (분사성형법에 의한 SiC입자강화 알루미늄 복합재료의 제조 I. 미세조직에 대한 고찰)

  • Park, Jong-Sung;Kim, Myung-Ho;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.369-381
    • /
    • 1993
  • Aluminum alloy(AC8A) matrix composites reinforced with SiC particles(10% in vol.) were fabricated by Centrifugal Spray Deposition(CSD) process. The microstructures were investigated in order to evaluate both the mixing mode between aluminum matrix and SiC particles, and the effect of SiC particles on the cooling behaviours of droplets during flight and preforms deposited. A non-continuum mathematical calculation was performed to explain and to quantify the evolution of microstructures in the droplets and preforms deposited. Conclusions obtained are as follows; 1. The powders produced by CSD process showed, in general, ligament type, and more than 60% of the powders produced were about 300 to 850 um in size. 2. AC8A droplets solidified during flight showed fine dendritic structure, but AC8A droplets mixed with SiC particles showed fine equiaxed grain structure, and eutectic silicon were formed to crystallize granularly between fine aluminum grains. 3. SiC particles seem to act as a nucleation sites for pro-eutectic silicon during solidification of AC8A alloy. 4. The microstructure of composite powders formed by CSD process showed particle embedded type, and resulted in dispersed type microstructure in preforms deposited. 5. The pro-eutectic silicon crystallized granularly between fine aluminum grains seem to prohibit grains from growth during spray deposition process. 6. The interfacial reactions between aluminum matrix and SiC particles were not observed from the deposit performs and the solidified droplets. 7. The continuum model seem to be useful in connecting the processing parameters with the resultant microstructures. From these results, it was concluded that the fabrication of aluminum matrix composites reinforced homogeneously with SiC particles was possible.

  • PDF

Microstructure and Mechanical Properties of Al2O3/Fe-Ni Nanocomposite Prepared by Rapid Sintering (급속소결에 의해 제조된 Al2O3/Fe-Ni 나노복합재료의 미세조직 및 기계적 특성)

  • Lee, Young-In;Lee, Kun-Jae;Jang, Dae-Hwan;Yang, Jae-Kyo;Cho, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense $Al_2O_3$ reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized $Al_2O_3$/Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and $Fe_2O_3$. Dense $Al_2O_3$/Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of $2000^{\circ}C/min$. Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the $Al_2O_3$/Fe-Ni nanocomposite.

Hybrid Atomization for Manufacturing Fine Spherical Metal Powder

  • Minagawa, Kazumi;Kakisawa, Hideki;Halada, Kohmei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.8-9
    • /
    • 2006
  • Hybrid atomization is a new atomization technique that combines gas atomization with centrifugal atomization. This process can produce fine, spherical powders economically with a mean size of about 10 m diameter and a tight size distribution.

  • PDF

Ultra-fine Grinding Mechanism of Pharmaceutical Additive by Stirred Ball Mill - Consideration of particle size distribution on ground nano-particle

  • Park, Woo-Sik;Choi, Hee-Kyu
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.234.2-234.2
    • /
    • 2003
  • Recently, the need for ultra-fine particles, especially nano-sized particles has increased in the fields preparing raw powders such as pharmaceutical additive and high value added products in the Nano-Technology processes. Therefore, the research in ultra-fine grinding is very important, especially, in nanometer grinding. In the previous paper, a series of wet grinding experiments using grinding aids using a stirred ball mill have been performed on grinding rate constant based on grinding kinetics. (omitted)

  • PDF

Electrical and Mechanical Characteristics of Ni-YSZ Tubular Support Fabricated by Extrusion (압출공정에 의해 제조된 Ni-YSZ 원통형 음극 지지체의 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Park, Gun-Woo;Seo, Doo-Won;Lee, Shi-Woo;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.768-774
    • /
    • 2006
  • The microstructure of Ni-YSZ cermets was controlled with fine and coarse starting powders (NiO and YSZ) to obtain a optimum strong and conductive tubular anode support for SOFCs. Three types of cermets with different microstructures, i.e., coarse Ni-fine YSZ, fine Ni-coarse YSZ, and fine Ni-fine YSZ, were fabricated to investigate their electrical and mechanical properties. The cermets from fine NiO powder showed high electrical conductivity due to the enhanced percolation of Ni particles. The cermet by foe Ni and coarse YSZ showed excellent electrical conductivity (>1000 S/cm) despite its high porosity $(\sim40%)$ but it showed poor mechanical strength due to the lack of percolation by YSZ particles and due to large pores. Thus fine NiO and YSZ powders were used to make strong and conductive Ni-YSZ support tube by extrusion. The microstructure of the anode tube was modified by the amount of polymeric additives and carbon black, a pore former. Ni-YSZ tube (porosity $\sim34%$) with the finer microstructure showed better performance both in electrical conductivity (>1000 S/cm) and fracture strength $(\sim140\;MPa)$. Either flat or circular NiO-YSZ tubes with the length from 20 to 40cm were successfully fabricated with the optimized composition of materials and polymeric additives.

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.