DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Al2O3/Fe-Ni Nanocomposite Prepared by Rapid Sintering

급속소결에 의해 제조된 Al2O3/Fe-Ni 나노복합재료의 미세조직 및 기계적 특성

  • Lee, Young-In (Department of Fine Chemical Engineering, Hanyang University) ;
  • Lee, Kun-Jae (Department of Fine Chemical Engineering, Hanyang University) ;
  • Jang, Dae-Hwan (Department of Fine Chemical Engineering, Hanyang University) ;
  • Yang, Jae-Kyo (Gangwon Industrial Technology Research Center, Research Institute of Industrial Science & Technology) ;
  • Cho, Yong-Ho (Department of Fine Chemical Engineering, Hanyang University)
  • 이영인 (한양대학교 정밀화학공학과) ;
  • 이근재 (한양대학교 정밀화학공학과) ;
  • 장대환 (한양대학교 정밀화학공학과) ;
  • 양재교 (포항산업과학연구원 강원산업기술연구소) ;
  • 좌용호 (한양대학교 정밀화학공학과)
  • Received : 2010.04.02
  • Accepted : 2010.05.10
  • Published : 2010.06.28

Abstract

A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense $Al_2O_3$ reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized $Al_2O_3$/Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and $Fe_2O_3$. Dense $Al_2O_3$/Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of $2000^{\circ}C/min$. Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the $Al_2O_3$/Fe-Ni nanocomposite.

Keywords

References

  1. K. Niihara: J. Ceram. Soc. Jpn., 99 (1991) 974. https://doi.org/10.2109/jcersj.99.974
  2. Q. Liu, W. Han and P. Hu: Scr. Mater., 61 (2009) 690. https://doi.org/10.1016/j.scriptamat.2009.05.041
  3. K. Niihara, T. Kusunose, T. Sekino and Y. H. Choa:Inter. Japan-Korea Semi. on Cera., 14 (1997) 161.
  4. S. T. Oh, J. S. Lee, T. Sekino and K. Niihara: Scr. Mater., 44 (2001) 2117. https://doi.org/10.1016/S1359-6462(01)00890-9
  5. K. H. Min, S. T. Oh, Y. D. Kim and I. H. Moon: J. Alloys Compd., 1 (2003) 1.
  6. B. S. Kim, J. S. Lee, T. Sekino, Y. H. Choa and K. Niihara:Scr. Mater., 44 (2001) 2121. https://doi.org/10.1016/S1359-6462(01)00762-X
  7. E. Menendez, G. Salazar-Alvarez, A. P. Zhilyaev, S.Surinach, M. D. Baro, J. Nogues and J. Sort: Adv. Funct. Mater., 18 (2008) 3298.
  8. B. S. Kim, J. S. Lee, S. T. Oh, Y. H. Choa, T. Sekinoand K. Niihara: J. Korean Powder Metall. Inst., 7(2000) 237.
  9. M. Lieberthal and W. D. Kaplan: Mater. Sci. Eng., A,302 (2001) 83. https://doi.org/10.1016/S0921-5093(00)01358-7
  10. T. Sekino, J. H. Yu, Y. H. Choa, J. S. Lee and K. Niihara:J. Ceram. Soc. Jpn., 108 (2000) 541. https://doi.org/10.2109/jcersj.108.1258_541
  11. V. A. Romanova, R. R. Balokhonov and S. Schmauder:Acta Mater., 57 (2009) 97. https://doi.org/10.1016/j.actamat.2008.08.046
  12. M. Yoshimura, M. Sando, Y. H. Choa, T. Sekino andK. Niihara: Key Eng. Mater., 161 (1999) 423. https://doi.org/10.4028/www.scientific.net/KEM.161-163.423
  13. J. Zhang, F. Meng, R. I. Todd and Z. Fu: Scripta Mater., 62 (2010) 658. https://doi.org/10.1016/j.scriptamat.2010.01.019
  14. K. M. Reddya, N. Kumara and B. Basu: Scripta Mater.,62 (2010) 435. https://doi.org/10.1016/j.scriptamat.2009.11.030
  15. C. S. Smith: Trans. Metal. Soc. AIME, 175 (1948) 15.
  16. A. Niihara and K. Niihara: J. Ceram. Soc. Jpn., 100(1992) 448. https://doi.org/10.2109/jcersj.100.448
  17. J. E. Burke: J. Am. Ceram. Soc, 40 (1957) 80. https://doi.org/10.1111/j.1151-2916.1957.tb12580.x
  18. H. J. Lee, Y. K. Jeong, S. T. Oh, J. S. Lee and T.Sekino: J. Kor. Cera. Soc., 39 (2002) 199. https://doi.org/10.4191/KCERS.2002.39.2.199