DOI QR코드

DOI QR Code

Effect of Al Precursor Type on Mesoporous Alumina Particles Prepared by Spray Pyrolysis

분무열분해공정에 의한 메조기공 알루미나 제조에 있어 Al 전구체 영향

  • Kim, Joo-Hyun (Department of Chemical Engineering, Gongju National University) ;
  • Jung, Kyeong-Youl (Department of Chemical Engineering, Gongju National University) ;
  • Park, Kyun-Young (Department of Chemical Engineering, Gongju National University)
  • Received : 2010.04.08
  • Accepted : 2010.05.14
  • Published : 2010.06.28

Abstract

Mesoporous alumina particles were prepared by spray pyrolysis using cetyltrimethyl-ammonium bromide (CTAB) as a structure directing agent and the effect of Al precursor types on the texture properties was studied using $N_2$ adsorption isotherms, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The surface area and the microstructure of alumina particles were significantly influenced by the Al precursor type. The largest BET surface area was obtained when Al chloride was used, whereas alumina particles prepared from Al acetate had the largest pore volume. According to small-angle X-ray scattering (SAXS) analysis, the alumina powders prepared using nitrate and acetate precursors had a clear single SAXS peak around $2{\theta}=1.0{\sim}1.5^{\circ}$, indicating that regular mesopores with sponge-like structure were produced. On the basis of TEM, SAXS, and $N_2$ isotherm results, the chloride precursor was most profitable to obtain the largest surface area ($265\;m^2/g$), whereas, the nitrate precursor is useful for the preparation of non-hollow mesoporous alumina with regular pore size, maintaining high surface area (${\sim}233\;m^2/g$).

Keywords

References

  1. J. Schaep, C. Vandecasteele, B. Peeters, J. Luyten, C.Dotremont and D. Roels: J. Membr. Sci., 163 (1999) 229. https://doi.org/10.1016/S0376-7388(99)00163-5
  2. Y. Kim, C. Kim, I. Choi, S. Rengaraj and J. Yi: Environ. Sci. Technol., 38 (2004) 924. https://doi.org/10.1021/es0346431
  3. R.-H. Zhao, C. P. Li, F. Guo and J.-F. Chen: Ind. Eng. Chem. Res., 46 (2007) 3317. https://doi.org/10.1021/ie061121w
  4. M. Kuemmel, D. Grosso, C. Boissiere, B. Smarsly, T.Brezesinski, P. A. Albouy, H. Amenitsch and C.Sanchez: Angew. Chem., Int. Ed., 44 (2005) 4589. https://doi.org/10.1002/anie.200500037
  5. J. H. Kim, K. Y. Jung, K. Y. Park and S. B. Cho:Micropor. Mesopor. Mater., 128 (2010) 85. https://doi.org/10.1016/j.micromeso.2009.08.008
  6. Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker and C.J. Brinker: Nature, 398 (1999) 223. https://doi.org/10.1038/18410
  7. H. Fan, F. V. Swol, Y. Lu and C. J. Brinker: J. Non-Crytal. Solids, 285 (2001) 71. https://doi.org/10.1016/S0022-3093(01)00434-3
  8. G. V. R. Rao, G. P. Lopez, J. Bravo, H. Pham, A. K.Datye, H. Xu and T. L. Ward: Adv. Mater., 14 (2002)1301. https://doi.org/10.1002/1521-4095(20020916)14:18<1301::AID-ADMA1301>3.0.CO;2-T
  9. M. T. Bore, S. B. Rathod, T. L. Ward and A. K. Datye:Langmuir, 19 (2003) 256. https://doi.org/10.1021/la020704h
  10. J. E. Hampsey, S. Arsenault, Q. Hu and Y. Lu: Chem. Mater., 17 (2005) 2475. https://doi.org/10.1021/cm0487167
  11. C. Boissière, L. Nicole, C. Gervais, F. Babonneau, M.Antonietti, H. Amenitsch, C. Sanchez and D. Grosso:Chem. Mater., 18 (2006) 5238. https://doi.org/10.1021/cm061489j
  12. Q. Liu, A. Wang, X. Wang and T. Zhang: Micropor. Mesopor. Mater., 100 (2007) 35. https://doi.org/10.1016/j.micromeso.2006.10.011
  13. Q. Liu, A. Wang, X. Wang and T. Zhang: Micropor. Mesopor. Mater., 92 (2006) 10. https://doi.org/10.1016/j.micromeso.2005.12.012