• Title/Summary/Keyword: filters

Search Result 4,199, Processing Time 0.034 seconds

Efficient Design of SVD-Based 2-D Digital Filters Using Specification Symmetry and Order-Selecting Criterion

  • Deng, Tian-Bo;Eriko Saito;Eiji Okamoto
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1784-1787
    • /
    • 2002
  • Two-dimensional (2-D) digital filters are widely useful inn image processing and other 2-D digital signal processing fields, but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones. This paper provides a new insight into the existing singular value decomposition (SVD)-based design approach in the sense that the SVD-based design can be performed more efficiently by exploiting the symmetries of the given 2-D magnitude specifications. By using the specification symmetries. only half of the 1-D filters (sub-filters) need to be designed. which significantly simplifies the design process and reduces the computer storage required for 1-D sub-filter coefficients. Another novel point of this paper si that an objective criterion is proposed for selecting appropriate sub-filter orders in order to reduce the hardware implementation cost. A design example is given to illustrate the effectiveness of the SVD-based design approach by exploiting specification symmetry and new order-selecting criterion.

  • PDF

Binomial Filters for Spectrum Sensing in Cognitive Radio System (인지 무선 시스템에서 스펙트럼 센싱을 위한 이항 필터)

  • Seong, JinSuk;Kim, Myungsup;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1132-1138
    • /
    • 2014
  • In this paper, we proposed three types of binomial filter for spectrum sensing in cognitive radio system. Three filters are binomial, negative binomial and composite binomial filters and the frequency responses of their transfer functions are analyzed and the numbers of stages to meet the required attenuation are driven. As a result of performance analysis in terms of the number of stages, negative and composite binomial filters are superior to the binomial filter. Since the proposed three filters have a unified cascaded structure and are easy to be implemented without any multiplier, it is expected that they will have wide applications.

Fabrication and experiment of tunable millimeter-wave filters (주파수 가변형 밀리미터파 필터의 제작 및 실험)

  • Park, Jae-Hyoung;Kim, Hong-Teuk;Kwon, Young-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3271-3273
    • /
    • 1999
  • In this paper, new micromachined tunable bandpass filters for multi-band millimeter-wave telecommunication systems are proposed. Two types of mm-wave tunable filters are fabricated using micromachining technology and the responses of the filters are measured. One is two-pole lumped elements filter and the other two-pole resonators filter. Frequency tunability of the filter is achieved by changing the gap between a common CPW ground plate and the movable cantilever beam connected to the transmission line with the controllable range of 2.5 ${\mu}m$. The deflection of cantilever beam is measured with the applied DC voltage. With the applied bias voltage from 0 to 50 V, the fabricated filters show 0.6 GHz(2.3 %) at 26.6 GHz, and 0.8 GHz(2.5%) at 32 GHz center frequency shift for the lumped elements and resonators filter, respectively.

  • PDF

Design of 2-D IIR Digital Filters Based on a Particle Swam Optimization (Particle Swarm Optimization을 이용한 2차원 IIR 디지털필터의 설계)

  • Lee, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1312-1320
    • /
    • 2009
  • This paper presents an efficient design method of 2-D infinite impulse response(IIR) digital filter based on a particle swarm optimization(PSO) algorithm. The design task is reformulated as a constrained minimization problem and is solved by our newly developed PSO algorithm. To ensure the stability of the designed 2-D IIR digital filters, a new stability strategy is embedded in the basic PSO algorithm. The superiority of the proposed method is demonstrated by several experiments. The results show that the approximation error of the resultant filters are better than those of the digital filters which designed by recently published filter design methods. The proposed design method can also obtain the stable2-D IIR digital filters.

Active Damping Method Using Grid-Side Current Feedback for Active Power Filters with LCL Filters

  • Tang, Shiying;Peng, Li;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • LCL filters installed at converter outputs offer a higher harmonic attenuation than L filters. However, as a three order resonant circuit, it is difficult to stabilize and has a risk of oscillating with the power grid. Therefore, careful design is required to damp LCL resonance. Compared to a passive damping method, an active damping method is a more attractive solution for this problem, since it avoids extra power losses. In this paper, the damping capabilities of capacitor current, capacitor voltage, and grid-side current feedback methods, are analyzed under the discrete-time state-space model. Theoretical analysis shows that the grid-side current feedback method is more suitable for use in active power filters, because it can damp LCL resonance more effectively than the other two methods when the ratio of the resonance and the control frequency is between 0.225 and 0.325. Furthermore, since there is no need for extra sensors for additional states measurements, this method provides a cost-efficient solution. To support the theoretical analysis, the proposed method is tested on a 7-kVA single-phase shunt active power filter.

A Study on Backwashing of Granular Fiters Used in Water Treatment (정수처리를 위한 여과지의 역세척에 관한 연구)

  • Lee, Jung Taek;Ahn, Jong Ho;Choi, Keun Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.61-72
    • /
    • 1999
  • To obtain the experimental data for design and operation of actual filtration processes, a sand filter and three kinds of dual media filters in pilot-plant scale were operated in this study. We analyzed the effect of filter medium composition on the filter performance and the effects of backwash water flow rates, length of stream line and air flow rate on the filter backwash efficiency. We also compared the efficiencies of the combined air-water backwashing and the water backwashing in dual media filters. As the backwash water flow rates or the length of stream line increased, the final turbidity of backwash water was decreased and the filtration duration time after backwash was increased. In the case of the combined air-water backwashing, the backwash water quantity needed for backwashing the dual media filters could be decreased. The total volume of filtered water for the dual media filters during filter run was over three times larger than that for the sand filter. The dual media filters could be operated at a high filtration rate of 360 m/day.

  • PDF

Adaptive Processing for Feature Extraction: Application of Two-Dimensional Gabor Function

  • Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.319-334
    • /
    • 2001
  • Extracting primitives from imagery plays an important task in visual information processing since the primitives provide useful information about characteristics of the objects and patterns. The human visual system utilizes features without difficulty for image interpretation, scene analysis and object recognition. However, to extract and to analyze feature are difficult processing. The ultimate goal of digital image processing is to extract information and reconstruct objects automatically. The objective of this study is to develop robust method to achieve the goal of the image processing. In this study, an adaptive strategy was developed by implementing Gabor filters in order to extract feature information and to segment images. The Gabor filters are conceived as hypothetical structures of the retinal receptive fields in human vision system. Therefore, to develop a method which resembles the performance of human visual perception is possible using the Gabor filters. A method to compute appropriate parameters of the Gabor filters without human visual inspection is proposed. The entire framework is based on the theory of human visual perception. Digital images were used to evaluate the performance of the proposed strategy. The results show that the proposed adaptive approach improves performance of the Gabor filters for feature extraction and segmentation.

Design of LLCL Filter for Single Phase Inverters with Confined Band Variable Switching Frequency (CB-VSF) PWM

  • Attia, Hussain A.;Freddy, Tan Kheng Suan;Che, Hang Seng;El Khateb, Ahmad H.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.44-57
    • /
    • 2019
  • Recently, the use of LLCL filters for grid inverters has been suggested to give better harmonic attenuation than the commonly used L and LCL filters, particularly around the switching frequency. Nevertheless, this filter is mainly designed for constant switching frequency pulse width modulation (CSF PWM) methods. In variable switching frequency PWM (VSF PWM), the harmonic components are distributed across a wide frequency band which complicates the use of a high order filter, including LCL and LLCL filters. Recently, a confined band variable switching frequency (CB-VSF) PWM method has been proposed and demonstrated to be superior to the conventional constant switching frequency (CSF) PWM in terms of switching losses. However, the applicability of LLCL filters for this type of CB-VSF PWM has not been discussed. In this paper, the authors study the suitability of an LLCL filter for CB-VSF PWM and propose design guidelines for the filter parameters. Using simulation and experimental results, it is demonstrated that the effectiveness of an LLCL filter with CB-VSF PWM depends on the parameters of the filters as well as the designed variable frequency band of the PWM. Simulation results confirm the performance of the suggested LLCL design, which is further validated using a lab scale prototype.

Design of Low Area Decimation Filters Using CIC Filters (CIC 필터를 이용한 저면적 데시메이션 필터 설계)

  • Kim, Sunhee;Oh, Jaeil;Hong, Dae-ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.71-76
    • /
    • 2021
  • Digital decimation filters are used in various digital signal processing systems using ADCs, including digital communication systems and sensor network systems. When the sampling rate of digital data is reduced, aliasing occurs. So, an anti-aliasing filter is necessary to suppress aliasing before down-sampling the data. Since the anti-aliasing filter has to have a sharp transition band between the passband and the stopband, the order of the filter is very high. However, as the order of the filter increases, the complexity and area of the filter increase, and more power is consumed. Therefore, in this paper, we propose two types of decimation filters, focusing on reducing the area of the hardware. In both cases, the complexity of the circuit is reduced by applying the required down-sampling rate in two times instead of at once. In addition, CIC decimation filters without a multiplier are used as the decimation filter of the first stage. The second stage is implemented using a CIC filter and a down sampler with an anti-aliasing filter, respectively. It is designed with Verilog-HDL and its function and implementation are validated using ModelSim and Quartus, respectively.

Filtration Performance Evaluation of Various Respiratory Face Masks Against Sub-Micron Particles (다양한 호흡기 보호용 면체 마스크의 서브 마이크론 입자에 대한 여과 성능 평가)

  • Zainul Alim Ali Murtadlo;Cho Hee-Joo;Park Hyun-Seol
    • Particle and aerosol research
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Respiratory face masks are protective facepieces that are designed to filter inhaled air. They are easy-to-use devices that can protect the wearer against various hazardous particles in the air. Respiratory face masks also prevent the spread of viruses and bacteria-containing droplets that are released from the coughing or sneezing of the infected people. During the COVID-19 pandemic, various types of face masks have circulated on the market. Their ability to filter sub-micron particles, which are the sizes of harmful particulate matter and airborne viruses, needs to be investigated. Their breathability, the easiness of breath through the mask, also needs to be considered. In this study, wwe evaluated the performance of filters used for different types of face masks certified by different standards including Korean (KF94, KF80, KF-AD), USA (N95), and Chinese (KN95) standards. We also tested the filters of nanofiber masks and surgical masks for which there are no standards for filtration test. The N95 mask filters showed the highest quality factor for capturing virus-sized particles. The other types of mask filters have acceptable performance except for nanofiber mask filters whose performance is very low.