• Title/Summary/Keyword: film bulk acoustic wave resonator (FBAR)

Search Result 34, Processing Time 0.03 seconds

Thermal Improvements for 2.75 GHz-FBAR Devices

  • Mai, Linh;Lee, Jae-Young;Pham, Van-Su;Kabir, S. M. Humayun;Dong, Hoai-Bac;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.196-199
    • /
    • 2007
  • In this paper, we studied a ZnO-based film bulk acoustic wave resonator (FBAR) device fabricated on top of a novel multi-layered Bragg reflector with chromium adhesion layers $(0.03{\mu}m-thick)$ inserted. The performance of FBAR device could be significantly improved using proper thermal treatments. At ${\sim}2.75$ GHz, we could achieve good return loss and quality factor (Q). This device fabrication technique will be useful for the future mobile WiMAX applications.

  • PDF

The Natural Cooling Effects of Pre-heated Substrate during RF Magnetron Sputter Deposition of ZnO (ZnO 박막의 RF 마그네트론 스퍼터 증착 중 미리 가열된 기판의 자연냉각 효과)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.905-909
    • /
    • 2007
  • Crystalline and micro-structural characteristics of ZnO thin films which were deposited on p-Si(100) with cooling naturally down of pre-heated substrate during RF magnetron sputter deposition, were investigated by XRD and SEM in this paper. The film which was prepared on the substrate which was pre-heated to $400^{\circ}C$ before deposition and then cooled naturally down during deposition, showed the most outstanding c-axis preferred orientation. The ZnO thin film having the best crystalline result were applied to SMR type FBAR device and resonance properties of the device were investigated by network analyzer. It showed that resonance frequency was 2.05 GHz, return loss was -30.64 dB, quality factor was 3169 and electromechanical coupling factor was 0.4 %. This deposition method would be very useful for application of surface acoustic wave filter or film bulk acoustic wave resonator.

Fabrication of Film Bulk Acoustic Wave Filters with Ladder and Stacked Crystal Filter Types (Ladder 형과 SCF 형의 구조를 가지는 FBAR 필터의 제작)

  • ;;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.630-632
    • /
    • 2003
  • In this paper, we present the fabrication and performance of FBAR filters with ladder and stacked crystal filter (SCF) types. The structure of the unit resonator in our work is the solidly mounted resonator (SMR) with W/SiO$_2$ multi-layer reflectors, the return loss of of which show -24dB at resonant frequency of -2.0GHz. The $K^2$eff, Q$_{s}$, and Q$_{p}$, indicating the performance of resonator were 3.24%, 6,363 and 6,749 and were calculated for the resonator with the resonance area of 21200${\mu}{\textrm}{m}$$^2$. Based on this unit resonator, FBAR filters with ladder and SCF types were fabricated and compared. The sizes of filters were 800$\times$2000(${\mu}{\textrm}{m}$$^2$) for the ladder type and 600$\times$500(${\mu}{\textrm}{m}$$^2$) for the SCF type.e..

  • PDF

A New Technique to Improve ZnO-based FBAR Device Performances

  • Mai, Linh;Lee, Jae-Young;Pham, Van Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.437-440
    • /
    • 2007
  • This paper presents the improvement of the resonance characteristics of film bulk acoustic-wave resonator (FBAR) devices fabricated on multilayer Bragg reflectors (BRs) based on inserting ultra-thin chromium (Cr) adhesion layers into BRs and post-annealing processes. The measurements show excellent improvement of return loss $(S_{11})$ and Q-factor by the combined use of Cr adhesion layers and thermal treatments particularly for 120 minutes at $200^{\circ}C$.

  • PDF

Fabrication of FBAR (SMR) using Reflector (반사층을 이용한 FBAR(SMR)의 제조)

  • Lee, Jae-Bin;Kwak, Sang-Hyon;Kim, Hyeong-Joon;Park, Hee-Dae;Kim, Young-Sik
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1263-1269
    • /
    • 1999
  • An FBAR(Solidly Mounted Resonator) was fabricated using reflector layers which prohibit the penetration of bulk acoustic wave into substrate. The SMR consisted of top and bottom electrodes(Al films), a piezoelectric layer (ZnO film), reflector layers(W/$Si_2$ films) and Si substrate. The electrodes were deposited by dc sputtering. The piezoelectric layer and the reflector layers were deposited by rf magnetron sputtering. The control of crystallinity, microstructures and electric properties of each layer was essential for attaining the optimum FBAR characteristics. Under the best deposition conditions for FBAR devices, the ZnO films had highly c-axis preferred orientation(${\sigma}=2.17^{\circ}$), resistivity of $10^4\;{\omega}cm$, and surface roughness of 10.6 ${\AA}$. On the other hand, the surface roughness of W and $Si_2$ films was 16 ${\AA}$ and 33 ${\AA}$, respectively, and the resistivity of Al film was $5.1{\times}10^{-6}\;{\Omega}cm$. The SMR devices were fabricated by the conventional semiconductor processes. In the resonance conditions of the SMR, the series resonance frequency (fs) and the parallel resonance frequency(fp) were 1.244 GHz and 1.251 GHz, respectively and the quality factor(Q) was 1200.

  • PDF

Numerical Analysis of Bragg Reflector Type Film Bulk Acoustic Wave Resonator (수치적 계산을 이용한 Bragg Reflector형 탄성파 공진기의 특성 분석)

  • 김주형;이시형;안진호;주병권;이전국
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.980-986
    • /
    • 2001
  • Bragg reflector type FBAR was fabricated on the Si(100) substrate. We measured a frequency response of the resonator at 5.2 GHz and analyzed it by numerical calculation considering actual acoustic losses of each layer in the structure. We fabricated nine layer Bragg reflector of W-SiO$_2$pairs using r.f. sputtering method and fabricated AlN piezoelectric and Al electrodes using pulsed dc sputtering. The return loss(S$_{11}$) of the fabricated Bragg reflector type FBAR was 12 dB at 5.38 GHz and the series resonance frequency(f$_{s}$) was 5.376 GHz and the parallel resonance frequency(f$_{p}$) was 5.3865 GHz. Effective electro-mechanical coupling constant (K$_{eff{^2}}$) and Quality factors(Q$_{s}$), the Figures of Merit of the resonator, were about 0.48% and 411, respectively. We extracted acoustic parameters of AlN piezoelectric and reflection coefficient of the Bragg reflector by numerical calculation. We could know that material acoustic impedance and wave velocity of AlN piezoelectric decreased for intrinsic value and the electromechanical coupling constant(K$_2$) value was very low owing to the poor quality of the AlN piezoelectric. Reflection coefficient of Bragg reflector was 0.99966 and reflection band was very wide from 2.5 to 9.5 GHz.

  • PDF

A study of air-gap type FBAR device fabrication using ZnO (ZnO를 이용한 air-gap 형태의 FBAR 소자 제작에 대한 연구)

  • Park, Sung-Hyun;Lee, Soon-Beom;Shin, Young-Hwa;Lee, Neung-Heon;Lee, Sang-Hoon;Chu, Soon-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1414-1415
    • /
    • 2006
  • Air-gap type film bulk acoustic wave resonator device using ZnO for piezoelectric layer and sacrifice layer, deposited by RF magnetron sputter with various conditions, fabricated in this study. Also, membrane$(SiO_2)$ and top and bottom electrode(both Al) of piezoelectric layer deposited by RF magnetron sputter. Using micro electro mechanical systems(MEMS) technique, sacrifice layer removed and then air-gap formed. The results of each process checked by XRD, AFM, SEM to obtain good quality device.

  • PDF

FBAR Devices Fabrication and Effects of Deposition Temperature on ZnO Crystal Growth for RF Filter Applications (RF 필터응용을 위한 FBAR 소자제작과 증착온도가 ZnO 박막의 결정성장에 미치는 영향)

  • Munhyuk Yim;Kim, Dong-Hyun;Dongkyu Chai;Mai Linh;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.88-92
    • /
    • 2003
  • In this paper, the characteristics of the ZnO films deposited on AI bottom electrode and the temperature effects on the ZnO film growth are presented along with the fabrication and their evaluation of the film bulk acoustic wave resonator (FBAR) devices. All the films used in this work were deposited using a radio-frequency (RF) magnetron sputtering technique. Growth characteristics of the ZnO films are shown to have a strong dependence on the deposition temperatures ranged from room temperature to 35$0^{\circ}C$ regardless of the RF power applied for sputtering the ZnO target. In addition, according to the growth characteristics of the distinguishably different micro-crystal structures and the degree of the c-axis preferred orientation, the deposition temperatures can be divided into 3 temperature regions and 2 critical temperatures in-between. Overall, the ZnO films deposited at/below 20$0^{\circ}C$ are seen to have columnar grains with a highly preferred c-axis orientation where the full width at half maximum (FWHM) of X-ray diffraction rocking curve is 14$^{\circ}$. Based on the experimental findings, several FBAR devices were fabricated and measured. As a result, the FBAR devices show return loss of ~19.5dB at resonant frequency of ~2.05GHz.

  • PDF

Balanced RF Duplexer with Low Interference Using Hybrid BAW Resonators for LTE Application

  • Shin, Jea-Shik;Song, Insang;Kim, Chul-Soo;Lee, Moon-Chul;Son, Sang Uk;Kim, Duck-Hwan;Park, Ho-Soo;Hwang, Sungwoo;Rieh, Jae-Sung
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.317-320
    • /
    • 2014
  • A balanced RF duplexer with low interference in an extremely narrow bandgap is proposed. The Long-Term Evolution band-7 duplexer should be designed to prevent the co-existence problem with the WiFi band, whose fractional bandgap corresponds to only 0.7%. By implementing a hybrid bulk acoustic wave (BAW) structure, the temperature coefficient of frequency (TCF) value of the duplexer is successfully reduced and the suppressed interference for the narrow bandgap is performed. To achieve an RF duplexer with balanced Rx output topology, we also propose a novel balanced BAW Rx topology and RF circuit block. The novel balanced Rx filter is designed with both lattice- and ladder-type configurations to ensure excellent attenuation. The RF circuit block, which is located between the antenna and the Rx filter, is developed to simultaneously function as a balance-tounbalance transformer and a phase shift network. The size of the fabricated duplexer is as small as $2.0mm{\times}1.6mm$. The maximum insertion loss of the duplexer is as low as 2.4 dB in the Tx band, and the minimum attenuation in the WiFi band is as high as 36.8 dB. The TCF value is considerably lowered to $-16.9ppm/^{\circ}C$.

Improvement of c-axis orientation of ZnO thin film prepared on pre-heated substrate with cooling during RF sputter deposition (RF 스퍼터를 이용하여 미리 가열된 기판을 냉각하며 증착한 ZnO 박막의 c축 배향성 향상에 관한 연구)

  • Park, Sung-Hyun;Lee, Soon-Beom;Shin, Young-Hwa;Lee, Neung-Heon;Ji, Seung-Han;Kwon, Sang-Jik
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.24-25
    • /
    • 2006
  • In this paper, ZnO thin films were prepared on p-Si(100) by RF magnetron sputtering. Before the depostion, the substrates were pre-heated to 500, 400, 300, $200^{\circ}C$ or not. During the deposition, the substrates were cooled down naturally or kept and then the films were investigated by XRD(X-ray diffraction) and SEM (scanning micro scope). It is showed the most outstanding result that the film was prepared on the substrate were cooled from $400^{\circ}C$. When the substrate was cooled from a certain temperature during deposition, it could be improve the c-axis orientation and useful for application of SAW(surface acoustic wave) filter and FBAR(film bulk acoustic wave resonator) device.

  • PDF