• 제목/요약/키워드: filling materials

검색결과 872건 처리시간 0.024초

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제3권4호
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

수종충전재의 변연누출에 관한 실험적 연구 (A Study of Marginal Leakage on Various Filling Materials)

  • 이윤상;김홍석;박가명
    • 대한치과의사협회지
    • /
    • 제11권5호
    • /
    • pp.337-340
    • /
    • 1973
  • The authers have studied the marginal leakage on various filing materials : Composite resin, Polycarboxylate cement, Zinc phosphate cement, Silicate cement and Zinc-oxide eugenol cement, by means of penetration of 2% aquous methylene blue between cavity walls and filing materials at body temperature and at thermal changs in the range of 4~60℃ The results revealed as follows. 1) All the filling materials revealed the penetration of dye between cavity walls and filling materials. 2) Zinc-oxide eugenol cement was the most effective to prevent the dye penetration on the contrary silicate cement cases showed greatest leakage at 37℃ and at temperature changes in range of 4-60℃. 3) The composite resin showed moderate leakage either at 37℃ or at thermal changes 4) Marginal obstructions of polycarboxylate cement were unsatisfactory at 37℃ and at temperature changes.

  • PDF

환형주조품의 용탕충진에 미치는 탕도연장부와 주입구 형상의 영향 (Effects of Runner Extension and Ingates on Mold Filling in Ring-type Cast Products)

  • 박경섭;강신욱;김희수
    • 한국주조공학회지
    • /
    • 제35권2호
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, potential defects of ring-type cast products during the mold-filling stage of the casting process were investigated using computer simulation. The main focus was on the effects of runner extension and ingates. During the mold filling the molten metal flowed from the bottom to the top of the mold in two curved paths along the ring-type cavity. The fluid fronts in the two paths did not show the identical velocity during the mold filling stage. This difference in the filling speeds may cause defects such as voids and local contractions. The present model contained virtual fluid detectors at various positions inside the mold. When the molten metal passed those points, the volume of fluid jumped up from zero to one. The moments were measured to compare the speeds of the fluid fronts. We attempted various combinations of runner extensions and ingates to stabilize the flow and then to optimize the casting mold design.

소실모형주조법으로 제조한 박판형 Al-Si합금에서의 주형 충전 및 기계적 성질 (Mold Filling and Mechanical Properties of Thin Sectioned Al-Si Alloy Fabricated by Lost Foam Casting Process)

  • 김정민;이재철;최진영;조재익;최경환
    • 한국주조공학회지
    • /
    • 제37권6호
    • /
    • pp.186-192
    • /
    • 2017
  • The lost foam casting method was used to fabricate Al-Si alloy thin sheet specimens; the effects of chemical composition and process variables on the mold filling and mechanical properties were investigated. The mold filling capability was observed to be proportional to the pouring temperature, and both the vibration imposed during the casting and the application of a pattern coating had rather negative effects. The mold filling capability also decreased with the addition of Mg or TiB. When the Mg content increased, the tensile strength of the cast alloy was enhanced, but the elongation decreased. However, after T6 heat treatment, both the strength and the elongation were improved. TiB addition for grain refining or pattern coating did not significantly affect the tensile properties.

근관와동 가봉재의 변연누출에 관한 실험적 연구 (A STUDY ON THE MARGINAL LEAKAGE OF ENDODONTIC CAVITY FILLING MATERIALS)

  • 노철진;임성삼
    • Restorative Dentistry and Endodontics
    • /
    • 제12권2호
    • /
    • pp.17-23
    • /
    • 1987
  • The purpose of this study was to evaluate the sealing properties of endodontic cavity filling materials according to the time intervals after filling. Access cavities were prepared in extracted human premolar or molar teeth and filled with caviton, zinc oxide eugenol cement, zinc oxide eugenol cement with a base of gutta percha stopping and gutta percha stopping. After filling at the intervals of immediate, 2 days and 2 weeks the teeth were immersed for 2 weeks in 1% methylene blue solutions. Longitudinal sections were obtained from approximately center of teeth and the depth of dye penetration into the access cavities were observed by 10${\times}$macrolens. The following results were obtained. I. All the materials experimented showed varying depth of dye penetration. 2. Of the material tested, caviton showed the best marginal sealing qualities regardless of the time intervals after filling and the sealing properties of the gutta percha stopping was the worst. 3. Both in zinc oxide eugenol cement and zinc oxide eugenol cement with a base of gutta percha stopping, the fillings allowed to mature for 2 days in normal saline solution showed the best sealing properties and those with no maturing time revealed the worst sealing qualities. 4. The sealing qualities of zinc oxide eugenol cement with a base of gutta percha stopping revealed slightly lower depth of dye penetration than that of zinc oxide eugenol cements.

  • PDF

실리콘 관통형 Via(TSV)의 Seed Layer 증착 및 Via Filling 특성 (Characteristic of Through Silicon Via's Seed Layer Deposition and Via Filling)

  • 이현주;최만호;권세훈;이재호;김양도
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.550-554
    • /
    • 2013
  • As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidths and good power efficiency. 3D integration can be defined as a technology involving the stacking of multiple processed wafers containing integrated circuits on top of each other with vertical interconnects between the wafers. This type of 3D structure can improve performance levels, enable the integration of devices with incompatible process flows, and reduce form factors. Through silicon vias (TSVs), which directly connect stacked structures die-to-die, are an enabling technology for future 3D integrated systems. TSVs filled with copper using an electro-plating method are investigated in this study. DC and pulses are used as a current source for the electro-plating process as a means of via filling. A TiN barrier and Ru seed layers are deposited by plasma-enhanced atomic layer deposition (PEALD) with thicknesses of 10 and 30 nm, respectively. All samples electroplated by the DC current showed defects, even with additives. However, the samples electroplated by the pulse current showed defect-free super-filled via structures. The optimized condition for defect-free bottom-up super-filling was established by adjusting the additive concentrations in the basic plating solution of copper sulfate. The optimized concentrations of JGB and SPS were found to be 10 and 20 ppm, respectively.

3차원 Si칩 실장을 위한 경사벽 TSV의 Cu 고속 충전 (High Speed Cu Filling into Tapered TSV for 3-dimensional Si Chip Stacking)

  • 김인락;홍성철;정재필
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.388-394
    • /
    • 2011
  • High speed copper filling into TSV (through-silicon-via) for three dimensional stacking of Si chips was investigated. For this study, a tapered via was prepared on a Si wafer by the DRIE (deep reactive ion etching) process. The via had a diameter of 37${\mu}m$ at the via opening, and 32${\mu}m$ at the via bottom, respectively and a depth of 70${\mu}m$. $SiO_2$, Ti, and Au layers were coated as functional layers on the via wall. In order to increase the filling ratio of Cu into the via, a PPR (periodic pulse reverse) wave current was applied to the Si chip during electroplating, and a PR (pulse reverse) wave current was applied for comparison. After Cu filling, the cross sections of the vias was observed by FE-SEM (field emission scanning electron microscopy). The experimental results show that the tapered via was filled to 100% at -5.85 mA/$cm^2$ for 60 min of plating by PPR wave current. The filling ratio into the tapered via by the PPR current was 2.5 times higher than that of a straight via by PR current. The tapered via by the PPR electroplating process was confirmed to be effective to fill the TSV in a short time.

다수 캐비티 사출금형에 적용되는 새로운 균형 충전용 러너 시스템 개발 (Development of New Runner System for Filling Balance in Multi Cavity Injection Mold)

  • 정영득
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.42-46
    • /
    • 2006
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filling imbalances are one of the most significant factors to affect quality of plastic parts. Filling imbalances are results from non-symmetrical shear rate distribution within melt when it flows through tile runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution for these filling imbalances by using Runner Core pin (RC pin). The Runner Core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using Runner Core pin, a remarkable improvement in reducing filling imbalances was confirmed.

Design and Fabrication of Information Security Films with Microlouver Pattern and ZnO Nano-Ink Filling

  • Kim, Gwan Hyeon;Kim, So Won;Lee, Seong Eui;Lee, Hee Chul
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.354-359
    • /
    • 2019
  • Information security films that can ensure personal privacy by reducing the viewing angle of display screens were fabricated by microlouver patterning and a ZnO nano-ink filling process. Optical simulation results demonstrated that all the microlouver films showed good security performances. Security performances were evaluated as calculated relative luminance ratios compared between the side and front. Based on the simulation results, microlouver films were fabricated by UV imprint lithography and nano-ink bar coating. However, distortion of the microlouver pattern occurred with the use of high-viscosity nano-inks such as ZrO2 and TiO2, and the CuO-filled microlouver film suffered from very low optical transmittance. Accordingly, the effects of ZnO filling height on security performance were intensively investigated through simulation and experimental measurements. The fabricated microlouver film with a 75-㎛-high ZnO filling exhibited a good relative luminance ratio of 0.75 at a 60° side angle and a transmittance of 44% at a wavelength of 550 nm.

사출금형에서 균형충전을 위한 새로운 러너시스템 멜트버퍼 (A New Runner System Melt-Buffer for Filling Balance in Injection Mold)

  • 정영득;장민규
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.122-127
    • /
    • 2009
  • The injection mold with multi-cavity is essential for mass production of plastic products. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. However, despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in injection molding. To solve these problems, many studies such as Melt Flipper, RC Pin, and others have been presented. The results of these studies have been an effect on filling balances in multi-cavity molds. But, those have had a limitation that additional insert parts must have existed in the mold. In this study, a new runner system is suggested for filling balance between cavity to cavity using "Melt-Buffer" with simple change of runner shape. A series of simulation to confirm feasibility of Melt-Buffer's effects was conducted using injection molding CAE program. Also, a series of injection molding experiment was conducted using plastic materials such as ABS and PP. As results of this study, feasibilities of filling balances by Melt-Buffer were confirmed.