DOI QR코드

DOI QR Code

High Speed Cu Filling into Tapered TSV for 3-dimensional Si Chip Stacking

3차원 Si칩 실장을 위한 경사벽 TSV의 Cu 고속 충전

  • Kim, In Rak (Dept. of Materials Sci. and Eng., University of Seoul) ;
  • Hong, Sung Chul (Dept. of Materials Sci. and Eng., University of Seoul) ;
  • Jung, Jae Pil (Dept. of Materials Sci. and Eng., University of Seoul)
  • 김인락 (서울시립대학교 신소재공학과) ;
  • 홍성철 (서울시립대학교 신소재공학과) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2010.12.23
  • Published : 2011.05.25

Abstract

High speed copper filling into TSV (through-silicon-via) for three dimensional stacking of Si chips was investigated. For this study, a tapered via was prepared on a Si wafer by the DRIE (deep reactive ion etching) process. The via had a diameter of 37${\mu}m$ at the via opening, and 32${\mu}m$ at the via bottom, respectively and a depth of 70${\mu}m$. $SiO_2$, Ti, and Au layers were coated as functional layers on the via wall. In order to increase the filling ratio of Cu into the via, a PPR (periodic pulse reverse) wave current was applied to the Si chip during electroplating, and a PR (pulse reverse) wave current was applied for comparison. After Cu filling, the cross sections of the vias was observed by FE-SEM (field emission scanning electron microscopy). The experimental results show that the tapered via was filled to 100% at -5.85 mA/$cm^2$ for 60 min of plating by PPR wave current. The filling ratio into the tapered via by the PPR current was 2.5 times higher than that of a straight via by PR current. The tapered via by the PPR electroplating process was confirmed to be effective to fill the TSV in a short time.

Keywords

Acknowledgement

Supported by : 서울

References

  1. Y. K. Tsuiand and S. W. Ricky, IEEE Trans. Adv. Pack. 28, 413 (2004).
  2. Y. N. Kim, J. M. Koo, S. K. Park, and S. B. Jung, J. Kor. Inst. Met. & Mater. 46, 33 (2008).
  3. K. Takahashi, M. Umemoto, N. Tanaka, K. Tanida, Y. Nemoto, Y. Tomita, M. Tago, and M. Bonkohara, Microelectron. Reliabil. 43 1267 (2003). https://doi.org/10.1016/S0026-2714(03)00167-7
  4. R. Hon, S. W. Ricky Lee, Shawn X. Zhang, and C. K. Wong, IEEE 2005 Elec. Pack. Tech. Conf. 384-389 (2005)
  5. M. Karnezos, Electron. Manufac. Tech. Sympo., 29th Int'l conf. IEEE/CPMT/SEMI., p64, San Jose (2004).
  6. C. Y. Yin, M. O. Alam, Y. C. Chan, C. Bailey, and H. Lu, Microelectron. Reliabil. 43, 625 (2003). https://doi.org/10.1016/S0026-2714(02)00348-7
  7. L. J. Ladani, Microelectron. Eng. 87, 208 (2010). https://doi.org/10.1016/j.mee.2009.07.022
  8. X. Gagnard and T. Mourier, Microelectron. Eng. 87, 470 (2010). https://doi.org/10.1016/j.mee.2009.05.035
  9. J. C. Eloy, Market trends & Cost Analysis for 3D ICs., http://www.yole.fr/(2007).
  10. T. Luoh and C. T. Su, T. H. Yang, K. C. Chen, and C. Y. Lu, Microelectron. Eng. 85, 1739 (2008). https://doi.org/10.1016/j.mee.2008.04.030
  11. E. M. Chow, V. Chandrasekaran, T. Nishida, M. Sheplak, C. F. Quate, T. W. Kenny, and A. Partridge, J. Micro Electromechanical sys. 11, 631 (2002). https://doi.org/10.1109/JMEMS.2002.805206
  12. K. Ishihara, C. F. Yung, A. A. Ayon, and M. A. Schmidt, J. Microelectromech. Sys. 8. 403 (1999). https://doi.org/10.1109/84.809054
  13. T. Takizawa, S. Ymamoto, K. Otsubo, and A. Kawasaki, Proceed. 15th IEEE Intl Conf. on Micro Electro Mechanical Sys., p. 338-391 IEEE, Las Vegas, (2002).
  14. T. Kobayashi, j. Kawasaki, K. Miura, and H. Honma, Electrochemical Acta 47, 85 (2001). https://doi.org/10.1016/S0013-4686(01)00592-8
  15. M. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, and S. Hayashi, Circuit World 29, 9 (2003). https://doi.org/10.1108/03056120310454943
  16. C. Lee, S. Tsuru, Y. Kanda, S. Ikeda, and M. Matsumura, J. Electrochem. Soc., 156, D543 (2009). https://doi.org/10.1149/1.3237139
  17. K. Y. K. Tsui, S. K. Yau V. C. K. Leung, P. Sun, and D. X. Q. Shi, Proceed. Intl Conf. on Electronic Pack. Tech. & High Density Pack. (ICEPT-HDP), p.23, IEEE, Beijing, (2009).
  18. A. Pohjoranta and R. Tenno, J. Electrochem. Soc., 154. D502 (2007). https://doi.org/10.1149/1.2761638
  19. J. S. Bae, G. H. Chang, and J. H. Lee, J. Microelectron. & Pack. Soc. 12. 129 (2005).
  20. M. Y. Kim, T. S. Oh, and T. S. Oh, Kor. J. Met. Meter. 48, 557, (2010).
  21. I. R. Kim, J. K. Park, Y. C. Chu, and J. P. Jung, Kor. J. Met. Mater. 48, 667 (2010).
  22. S. Spiesshoefer, J. Patel, T. Lam, L. Cai, S. Polamreddy, R. F. Figueroa, S. L. Burkett, L. Schaper, R. Geil, and B. Rogers, J. Vac. Sci. Technol. A 24, 1277 (2006). https://doi.org/10.1116/1.2206193
  23. K. S. Kim, Y. C. Lee, J. H. Ahn, J. Y. Song, C. D. Yoo, and S. B. Jung, Kor. J. Met. Mater. 48, 1028 (2010). https://doi.org/10.3365/KJMM.2010.48.11.1028
  24. R. Nagarajan, K. Prasad, L. Ebin, and B. Narayanan, Sensors and Actuators A 139, 323 (2007). https://doi.org/10.1016/j.sna.2007.01.014
  25. M. W. Newman, S. Muthukumar, M. Schuelein, T. Dambrauskas, P. A. Dunaway, J. M. Jordan, S. Kulkarni, C. D. Linde, T. A. Opheim, R. A. Stingel, W. Worwag, L. A. Topic, and J. M. Swan, IEEE 2006 Elect. Compo. and Tech. Conf., pp. 394-398 (2006).
  26. W. Ahmed, E. Ahmed, and A. A. Dost, J. Materials Science: Materials in Electronics 7, 127 (1996).
  27. K. Takahashi, H. Terao, Y. Tomita, Y. Yamaji, M. Hoshino, T. Sato, T. Morifuji, M. Sunohara, and M. Bonkohara, Jpn J. Appl. Phys. 40, 3032 (2001). https://doi.org/10.1143/JJAP.40.3032
  28. H. H. Hsu, K. H. Lin, S. J. Lin, and J. W. Yeh, J. Electrochem. Soc. 148, C47 (2001). https://doi.org/10.1149/1.1344538
  29. B. S. Kang, S. M. Lee, J. S. Kwak, D. S. Yoon, and H. K. Baik, J. Electrochem. Soc. 144, 1807 (1997). https://doi.org/10.1149/1.1837684
  30. S. S. Wong, C. Ryu, H. Lee, A. L. S. Loke, K. W. Kwon, S. Bhattacharya, R. Eaton, R. Faust, B. Mikkola, J. Mucha, and J. Ormando, Proceed. Intl Interconnect Tech. Conf. p.107, San Francisco (1998).
  31. S. W. Yoon, D. W. Yang, J. H. Koo, Meenakshi Padmanathan, and Flynn Carson, IEEE Intl Conf. on 3D System Integration, 2009. 3DIC, 1-5 IEEE, San Francisco (2009).