• Title/Summary/Keyword: filler system

Search Result 307, Processing Time 0.023 seconds

Reduction of Tractive Force by Revetment Mattress/Filter (호안 Mattress/Filter에 의한 소류력 저감)

  • Seo Young-Min;Lee Seung-Yun;Heo Chang-Hwan;Jee Hong-Kee
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2006
  • Revetment Mattress/Filter is the porous structure filled fillers in meshed structure so that it cail use the fillers of various sizes and form various pores. The porous structure of the Mattress/Filter increases drainage so that it decreases the energy and erosion of flow therefore the tractive force is decreased and the erosion of revetment is mitigated. The filler of Mattress/Filter uses gravels, waste concretes and slags so that the surface is rough and the roughness coefficient increases and the increase of the roughness coefficient decreases flow velocity and tractive force. On the other hand Mattress/Filter and vegetation are combined so that the increase of roughness coefficient and flow velocity still more progress therefore the effect of decrease of tractive force is increased after a few months have passed since the Mattress/Filter is constructed so that the vegetation is developed and be stabilized. The vegetation channel of Mattress/Filter is set tip and the inspection comes into operation by varing flowrate and vegetation spacing to examine these characters of the Mattress/Filter The coefficient of flow velocity U/U*' is decreased exponentially as vegetation esity aH' or $\lambda$ is increased and the coefficient of friction f is increased as vegetation desity aH' is increased but decreased as the coefficient of flow velocity U/U*' is increased. The effective tractive force $F_0$ is decreased exponentially as the vegetation desity aH' is increased. From the inspection the results are obtained that the porous and vegetation structure of the revetment Mattress/Filter system increases the coefficient of friction of revetment so that flow velocity and effective are decreased therefore greatly contributes the stability of the revetment.

Filler-Elastomer Interactions. 11. Influence of Atmospheric Pressure Plasma on Surface Properties of Nanoscaled Silicas (충전재-탄성체 상호작용. 11. 상압플라즈마 처리가 나노구조의 실리카 표면특성에 미치는 영향)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • In this work, the effect of oxygen plasma treatment of nano-scaled silica on the mechanical interfacial properties and thermal stabilities of the silica/rubber composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy (XPS) and contact angles. And, their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy ($G_{IIIC}$) and thermogravimetric analysis (TGA), respectively. As a result, it was found that the introduction rate of oxygen-containing polar functional groups onto the silica surfaces was increased by increasing the plasma treatment time, resulting in improving the tearing energy. Also, the thermal stabilities of the composites were increased by increasing the treatment time. These results could be explained that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the silica surfaces in a compounding system.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Properties of LDPE Composite Films Using Polyurushiol (YPUOH) for Functional Packaging Applications (폴리우루시올(YPUOH)을 이용한 기능성 패키징용 LDPE 복합필름의 특성분석에 관한 연구)

  • Jung, Suyeon;Kim, Dowan;Seo, Jongchul
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • Lacquer sap extracted from lacquer trees exhibits good thermal stabilities and antimicrobial properties. To apply these superior properties to functional packaging, polyurushiol (YPUOH) powders were prepared and blended into LDPE (low density polyethylene) to prepare three different LDPE/YPUOH composite films via a twin screw extruder system. Their morphology, thermal and antimicrobial properties as well as barrier properties of the LDPE/YPUOH composite films were thoroughly investigated to find out applicablities of the films as functional packaging materials. Although the interfacial interaction between LDPE and YPUOH was relatively weak, LDPE/YPUOH composite films exhibited good dispersion of YPUOH in LDPE, resulting in the enhanced thermal stability with YPUOH loading. Due to the good antibacterial property of as-prepared YPUOH, LDPE/YUOH composite films also showed an excellent antibacterial activity (R) of 99.9% against E. coli. Furthermore, the moisture barrier property of LDPE/YPUOH composite films increased with increasing YPUOH contents. Incorporating the relatively low amount of YPUOH in LDPE resulted in the apparent enhancement in thermal stabilities, antibacterial and moisture barrier properties, which made them promising candidates as a functional filler for packaging materials.

Evaluation of a Ground Heat Exchanger Appropriate for the Site of the Third Stage Construction of Incheon International Airport (인천국제공항 3단계 건설부지에 적합한 지중열교환기 시스템 평가 연구)

  • Cho, Nam-Hyun;Song, Jung-Tae;Yoon, Seok;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.23-33
    • /
    • 2015
  • In the present study, a ground heat exchanger was installed for each heat source in the system at the site to evaluate ground heat conductivity, constructability, and economic feasibility; the factors considered in the study included ground heat, groundwater, fillers (such as bentonite and pea pebbles) and the shape of the heat exchange pipe (e.g., U and D-U). The aim was to determine the ground heat exchanger appropriate for the geothermal system in the 3rd-phase construction of Incheon International Airport. A comparative cost analysis of the initial costs based on the above information showed that although the initial costs of the regular vertical closed loop-II and modified vertical closed loop were lower than those of the regular vertical closed loop-I, they could not be expected to deliver high economic efficiency from the viewpoint of constructability (filler injection, heat exchange pipe insertion). The initial costs proved to be higher in the case of Geohil.

A Making of Aesthetic Dental restorations with Nano Hybrid Ceramic material by CAD/CAM System (치과 CAD/CAM용 Nano Hybrid Ceranic 소재를 이용한 심미 치과보철물의 제작)

  • Choi, Beom-jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.98-108
    • /
    • 2016
  • In recent days, perhaps the biggest driver in new material development is the desire to improve restorations esthetics compared to the traditional metal substructure based ceramics or all-ceramic restorations. Each material type performs differently regarding strength, toughness, effectiveness of machining and the final preparation of the material prior to placement. For example, glass ceramics are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long time sintering procedure which excludes its use for fast chair side production. Hybrid ceramic material developed for CAD/CAM system is contained improved nano ceramic elements. This new material, called a Resin Nano Hybrid Ceramic is unique in durability of function and aesthetic base compositions. The new nano-hybrid ceramic material is not a composite resin. It is also not a pure ceramic. The material is a mixture of both and consists of nano-ceramic fillers. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined by chair side or in a dental lab side, could be an useful restorative option.

A Study on the Co-firing Compatibility with Ag-thick film and Dielectric Characteristics of Low Temperature Sinterable SiO$_2$-TiO$_2$-Bi$_2$O$_3$-RO system (RO :BaO-CaO-SrO) Glass/Ceramic Dielectric Material with the Addition of B$_2$O$_3$ (저온 소성용 SiO$_2$-TiO$_2$-Bi$_2$O$_3$-RO계(RO :BaO-CaO-SrO) Glass/ceramic 유전체 재료의 B$_2$O$_3$첨가에 따른 Ag 후막과의 동시 소결시 정합성 밀 유전 특성에 관한 연구)

  • 윤장석;이인규;유찬세;이우성;강남기
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.37-43
    • /
    • 1999
  • Co-firing incompatibility between the low temperature sinterable Glass/ceramic and Ag-thick film was studied. The dielectric material, which has been developed for microwave frequency applications, consists of $SiO_2-TiO_2-Bi_2O_3$-$Bi_2O_3$-RO system(RO:BaO -CaO-SrO) crystallizable glass and $Al_2O_3$as a ceramic filler. The large camber in the sintered specimen and cracks at the Ag-film under the influence of the camber occurred due to the difference of densification rate between the ceramic sheet and the Ag-film $B_2O_3$addition to the Glass/ceramic mixture reduced the severe camber. The cambers decreased with increasing the $B_2O_3$ content, and completely disappeared with 14 vol% $B_2O_3$addition. With additions of $B_2O_3$, $\varepsilon_{r}$ decreased abruptly, Q$\times$f value increased largely and the $\tau_f$ value of the material quickly shifted to positive one.

  • PDF

Field Applicability and Manufacturing of Foam Concrete as Filler with the Low-strength and High-flow for Repair System of Ground Subsidence (지반 함몰 복구용 저강도·고유동 충전재로서 기포콘크리트 연구 및 현장적용)

  • Ma, Young;Kim, Beom-Seok;Woo, Yang-Yi;Jung, Kyung-Hun;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.43-52
    • /
    • 2020
  • The objectives of this study were to identify the optimal mix of foam concrete with the low-strength and high-flow for the repairing ground subsidence situation emergently by utilizing a large amount of industrial by-products and evaluate the possibility by applying it to the site. The factors of the experiment were the mixing ratio of mixing water and a foaming agent and the mixing ratio of foam over paste volume. The optimal mix identified by the experiment was applied to the field and basic properties were evaluated. The results of the experiment showed that the optimal mixing ratio of mixing water and the foaming agent was 10%. Moreover, when the mixing ratio of pre-foam over paste volume was 170%, it satisfied the target. However, to ensure stable quality when applying to the field, the foam mixing ratio was set 140% for the field application. The field application test of foam concrete with the low-strength and high-flow using an eco-friendly binder satisfied all target performances. Therefore, the possibility of using it as a mixture and construction method for a ground repair system is confirmed. However, there was a quality deviation between the upper part and the lower part due to the separation between foam and paste. Consequently, further studies are needed to improve it.

A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger (지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Choi, Hyo-Pum;Woo, Sang-Baik
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • A geothermal heat pump system is a preferable alternative energy system in Korea because it uses the heat energy of the earth, which is environmentally friendly and inexhaustible. In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts, one marine clay from Boryung, and cement grouts adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The marine clay turns out to be unsuitable for backfilling the ground heat exchanger due to its insufficient swelling potential. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than that in the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination (다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발)

  • Yu, Hye-Weon;Song, Jun-Ho;Kim, Chang-Min;Yang, Euntae;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.