DOI QR코드

DOI QR Code

Properties of LDPE Composite Films Using Polyurushiol (YPUOH) for Functional Packaging Applications

폴리우루시올(YPUOH)을 이용한 기능성 패키징용 LDPE 복합필름의 특성분석에 관한 연구

  • 정수연 (연세대학교 과학기술대학 패키징학과) ;
  • 김도완 (연세대학교 과학기술대학 패키징학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과)
  • Received : 2014.08.06
  • Accepted : 2014.10.23
  • Published : 2015.02.10

Abstract

Lacquer sap extracted from lacquer trees exhibits good thermal stabilities and antimicrobial properties. To apply these superior properties to functional packaging, polyurushiol (YPUOH) powders were prepared and blended into LDPE (low density polyethylene) to prepare three different LDPE/YPUOH composite films via a twin screw extruder system. Their morphology, thermal and antimicrobial properties as well as barrier properties of the LDPE/YPUOH composite films were thoroughly investigated to find out applicablities of the films as functional packaging materials. Although the interfacial interaction between LDPE and YPUOH was relatively weak, LDPE/YPUOH composite films exhibited good dispersion of YPUOH in LDPE, resulting in the enhanced thermal stability with YPUOH loading. Due to the good antibacterial property of as-prepared YPUOH, LDPE/YUOH composite films also showed an excellent antibacterial activity (R) of 99.9% against E. coli. Furthermore, the moisture barrier property of LDPE/YPUOH composite films increased with increasing YPUOH contents. Incorporating the relatively low amount of YPUOH in LDPE resulted in the apparent enhancement in thermal stabilities, antibacterial and moisture barrier properties, which made them promising candidates as a functional filler for packaging materials.

옻나무에서 추출한 우루시올은 우수한 열안정상과 항균성을 나타내며, 이러한 특성을 기능성 패키징에 응용하기 위하여 폴리우루시올(YPUOH) 분말을 제조하였다. 제조한 YPUOH 분말과 저밀도 폴리에틸렌(LDPE)을 twin screw extruder system을 이용하여 다른 세 가지 조성의 LDPE/YPUOH 복합필름을 제조하였다. 기능성 패키징 소재로서의 응용 가능성을 알아보기 위하여 LDPE/YPUOH 복합필름에 대한 모폴로지, 열적 특성, 항균 특성, 배리어 특성을 조사하였다. LDPE와 YPUOH의 상호작용은 약하지만, 잘 분산된 복합필름 제조가 가능하였으며, YPUOH의 도입에 따라 열안정성은 증가하였다. YPUOH 분말의 우수한 항균특성은 제조한 LDPE/YPUOH의 복합필름에서도 E. coli에 대하여 99.9%의 우수한 항균활성(R)을 확인할 수 있었다. 또한, LDPE/YPUOH 복합필름의 수분에 대한 배리어 특성은 YPUOH의 함량이 증가함에 따라 향상되었으며, 이는 YPUOH가 수분에 대한 배리어성 필러로서 작용하며, 또한 복합필름의 표면 특성을 소수성으로 변화시켜주는 것에 기인한다. 저함량의 YPUOH 도입에 따른 LDPE의 내열성, 항균 특성, 수분에 대한 배리어 특성의 향상은 옻 추출물로 제조한 YPUOH가 패키징 소재의 기능성 필러로서 응용 가능성이 높다는 것을 의미한다.

Keywords

References

  1. M. Ramos, A. Jimenez, M. Peltzer, and M. Garrios, Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging, J. Food Eng., 109, 513-519 (2012). https://doi.org/10.1016/j.jfoodeng.2011.10.031
  2. G. Jeon, S. Park, J. Seo, K. Seo, H. Han, and Y. You, Preparation of polyurushiol (PUOH) using urushiol and property of LDPE / PUOH composite films, J. Korean Ind. Eng. Chem., 22, 610-616 (2011).
  3. C. Sivestre, D. Duraccio, and S. Cimmino, Food packaging based on polymer nanomaterials, Prog. Polym. Sci., 36, 1766-1782 (2011). https://doi.org/10.1016/j.progpolymsci.2011.02.003
  4. C. Lim, I. Hong, S. Hong, K. Jang, J. S. Kim, and H. Kim, Coating and gas permeation properties of urushiol-based organic/inorganic hybrid films, J. Sol-gel Sci. Technol., 30, 117-128 (2004). https://doi.org/10.1023/B:JSST.0000034699.65225.5d
  5. P. Appendinia and J. H. Hotchkissb, Review of antimicrobial food packaging, Innov. Food Sci. Emer. Technol., 3, 113-126 (2002). https://doi.org/10.1016/S1466-8564(02)00012-7
  6. Y. Lee, Y. E. Lee, J. Lee, and Y. Kim, Effect of antimicrobial microperforated film packaging on extending shelf life of cluster-type tomato (Lycopersicon esculentum Mill.), Korean J. Hort. Sci., 29, 447-455 (2011).
  7. H. Kim, J. Yeum, S. Choi, J. Lee, and I. Cheong, Urushiol/polyurethane-urea dispersions and their film properties, Prog. Org. Coat., 65, 341-347 (2009). https://doi.org/10.1016/j.porgcoat.2009.02.002
  8. M. Moradi, H. Tajik, S. M. R. Rohani, A. R. Oromiehie, H. Malekinejad, J. Aliakbarlu, and M. Hadian, Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract, LWT-Food Sci. Technol., 46, 477-484 (2012). https://doi.org/10.1016/j.lwt.2011.11.020
  9. J. M. Lee, P. Chang, and J. H. Lee, Comparison of oxidative stability for the thermally-oxidized vegetable oils using a DPPH method, Korean J. Food Sci. Technol., 39, 133-137 (2007).
  10. D. Kim, I. Kim, J. Seo, and J. S. Seo, Preparation of polyurushiol (PUOH) using urushiol and property of LDPE/PUOH composite films, Appl. Chem. Eng., 23, 546-553 (2012).
  11. D. Kim, S. Jeon, and J. Seo, The preparation and characterization of urushiol powders (YPUOH), Prog. Org. Coat., 76, 1465-1470 (2013). https://doi.org/10.1016/j.porgcoat.2013.05.034
  12. S. Jung, D. Kim, and J. Seo, Preparation and the antioxidant and antibacterial activities of urushiol powders (YPUOH), Prog. Org. Coat., 77, 981-987 (2014). https://doi.org/10.1016/j.porgcoat.2014.02.002
  13. Japanese Industrial Standard JIS Z 2801 (2000).
  14. Y. Wang, J. Shi, I. Han, and F. Xing, Crystallization and mechanical properties of T-ZnOw/HDPE composites, Mater. Sci. Eng., A 501, 220-228 (2009). https://doi.org/10.1016/j.msea.2008.09.061
  15. D. Kim, M. Lim, I. Kim, J. Seo, and H. Han, Preparation and properties of hydrophobic layered silicate-reinforced UV-curable poly (urethane acrylate) nanocomposite films for packaging applications, Prog. Org. Coat., 77, 1045-1052 (2014). https://doi.org/10.1016/j.porgcoat.2014.03.007
  16. C. Zheng, D. Binyang, C. Tianyou, L. Haotian, X. Junting, and F. Zhiqian, Fabrication and properties of thermosensitive organic/inorganic hybrid hydrogel thin films, Langmuir, 24, 5543-5551 (2008). https://doi.org/10.1021/la8000653
  17. A. Norma, V. Rangel, and L. G. Timoteo, Spectroscopy analysis of chemical modification of cellulose fibers, J. Mexican Chem. Soc., 54, 192-197 (2010).
  18. D. Kim, G. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, and S. B. Khan, Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO, Prog. Org. Coat., 74, 435-442 (2012). https://doi.org/10.1016/j.porgcoat.2012.01.007
  19. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis, Polym. Degrad. Stab., 93, 90-98 (2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  20. J. Hong and H. Kim, Surface and dielectric properties of oriental lacquer films modified by UV-curable silicone acrylate, Macromol. Res., 14, 617-623 (2006). https://doi.org/10.1007/BF03218733
  21. J. Seo, G. Jeon, E. S. Jang, S. B. Khan, and H. Han, Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications, J. App. Polym. Sci., 122, 1101-1108 (2011). https://doi.org/10.1002/app.34248
  22. P. K. Roy, P. Surekha, C. Rajagopal, and V. Choudhary, Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant, Expr. Polym. Lett., 1, 208-216 (2007). https://doi.org/10.3144/expresspolymlett.2007.32
  23. M. Lim, D. Kim, J. Seo, and H. Han, Preparation and properties of poly(vinyl alcohol)/vinyltrimethoxysilane (PVA/VTMS) hybrid films with enhanced thermal stability and oxygen barrier properties, Macromol. Res., 20, 1096-1101 (2014).
  24. S. Pavlidou and C. D. Papaspyrides, A review on polymer-layered silicate nanocomposites, Prog. Polym. Sci., 33, 1119-1198 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.008
  25. G. Choudalakis, A. D. Gotsis, Permeability of polymer/clay nanocomposites: A review, Europ. Polym. J. 45, 967-984 (2009). https://doi.org/10.1016/j.eurpolymj.2009.01.027
  26. S. T. Palakattukunnel, S. Thomas, P. A. Sreekumar, and S. Bandyopadhyay, Poly(ethylene-co-vinyl acetate)/calcium phosphate nanocomposites: contact angle, diffusion and gas permeability studies, J. Polym. Res., 18, 1277-1285 (2011). https://doi.org/10.1007/s10965-010-9530-1
  27. X. Shi and Z. Gan, Preparation and characterization of poly(propylene carbonate)/montmorillonite nanocomposites by solution intercalation, Europ. Polym. J., 43, 4852-4858 (2007). https://doi.org/10.1016/j.eurpolymj.2007.09.024

Cited by

  1. Preparation of Nickel Coated-carbon Nanotube/Zinc Oxide Nanocomposites and Their Antimicrobial and Mechanical Properties vol.27, pp.5, 2016, https://doi.org/10.14478/ace.2016.1071