• Title/Summary/Keyword: filler metal

Search Result 300, Processing Time 0.02 seconds

Research Trends in Thermally Conductive Composites Filled with Carbon Materials (탄소재료가 내첨된 열전도성 복합재의 연구 동향)

  • An, Donghae;Kim, Kyung Hoon;Kim, Ji-Wook;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.73-83
    • /
    • 2020
  • As electronic devices become more advanced and smaller, one of the biggest problems to solve is the heat affecting the efficiency and lifetime of instruments. High thermal conductivity materials, in particular, metal or ceramic ones, have been used to reduce the heat generated from devices. However, due to their low mechanical properties and high weight, thermally conductive composites composed with polymers having a light-weight and good mechanical properties as a matrix and carbon materials having high thermal conductivity as a thermally conductive filler have been attracting great attention. To improve the thermal conductivity of the composites, a phonon scattering must be suppressed to move phonon effectively. In this review, we classified researches related to phonon migration and scattering inhibition of carbon/polymer composites, and discussed various methods to improve thermal conductivity.

A Study on the Overlay Welding Process Optimization of GTAW by Double Torch (GTAW Double Torch의 육성용접 공정최적화에 관한 연구)

  • Lim, Byung-Chul;Son, Young-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • In this study, GTAW was carried out on austenitic STS316 stainless steel. Overlay welding with the stellite-base filler metal was implemented using a double torch. The response variable was calculated on the measured Vickers hardness for process optimization using the Taguchi method and its response variable was then analyzed about effect on overlay welding characteristics. The optimal process design by the Taguchi method is extremely effective in the overlay welding process for the multiple response variables. In addition, the effects of contribution rate about each response variable was analyzed easily. The conditions of the optimal process were 105A, 18V, pre-heat treatment at $200^{\circ}C$, and post weld heat treatment at $100^{\circ}C$. The Vickers hardness of the specimens produced under the optimal condition of GTAW by the double torch was 8.19% higher than that by a single torch.

Filled Skutterudites: from Single to Multiple Filling

  • Xi, Lili;Zhang, Wenqing;Chen, Lidong;Yang, Jihui
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • This paper shortly reviews our recent work on filled skutterudites, which are considered to be one of the most promising thermoelectric (TE) materials due to their excellent power factors and relatively low thermal conductivities. The filled skutterudite system also provides a platform for studying void filling physics/chemistry in compounds with intrinsic lattice voids. By using ab initio calculations and thermodynamic analysis, our group has made progresses in understanding the filling fraction limit (FFL) for single fillers in $CoSb_3$, and ultra-high FFLs in a few alkali-metal-filled $CoSb_3$ have been predicted and then been confirmed experimentally. FFLs in multiple-element-filled $CoSb_3$ are also investigated and anonymous filling behavior is found in a few specific systems. The calculated and measured FFLs, in both single and multiple-filled $CoSb_3$ systems, show good accordance so far. The thermal transport properties can be understood qualitatively by a phonon resonance scattering model, and it seems that a scaling rule may exist between the lattice thermal resistivity and the resonance frequency of filler atoms in filled system. Even though a few things become clear now, there are still many unsolved issues that call for further work.

A Study on the Toothbrush-Dentifrice Abrasion of Class V Restroations (치경부 5급 와동 수복의 잇솔질 마모에 관한 연구)

  • Hwang, Su-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • The objective of this study was to evaluate the toothbrush abrasion characteristics of class V restorations. Thirty extracted human premolars, which were collected from oral surgery clinics were used. We mounted five teeth in a metal ring mold of 50 mm in diameter and 15 mm in height using chemically cured acrylic resin. Class V cavities were prepared in lingual cervical root surfaces and restored using one of following restorative materials : Dentin Conditioner/Fuji II LC (Group FL), All Bond II/Z-250 (Group ZT), One-up Bond F/Palfigue Estelite (Group PE), F2000 Primer/Adhesive (Group FT), and Prime & Bond 2.1/Dyract AP (Group DR). They were stored under distilled water at $37^{\circ}C$ for seven days. The toothbrush abrasion test was conducted using a wear testing machine of pin-on disk type under a load of 1.5 N for 100,000 cycles. We have examined the bonded interfaces, the changes of surface roughness and color of abraded surfaces. From this experiment, the following results were obtained. 1. The change of surface roughness showed high degree: RMGIC>compomer>composite resin (p<0.05). 2. Because of the protrusion and missing of filler particles, SEM observation of abraded surfaces of RMGIC and compomers revealed the increase of surface roughness due to the selective removal of matrix resin. 3. The color change by toothbrush abrasion was affected in large part by the change of $L^*$ and $b^*$ of resin composites (p<0.05). 4. The color change by toothbrush abrasion was so small to detect by human eyes. 5. SEM observation of abraded surfaces revealed the interface bonding was the best in the FT group.

Techniques for Estimating Temper Bead Welding Process by using Temperature Curves of Analytical Solution (해석 해의 온도곡선을 이용한 템퍼비이드 용접공정 평가기술)

  • Lee, Ho-Jin;Lee, Bong-Sang;Park, Kwang-Soo;Byeon, Jin-Gwi;Jung, In-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.51-57
    • /
    • 2010
  • Brittle microstructure created in a heat affected zone (HAZ) during the welding of low alloy steel can be eliminated by post-weld heat treatment (PWHT). If the PWHT is not possible during a repair welding, the controlled bead depositions of multi-pass welding should be applied to obtain tempering effect on the HAZ without PWHT. In order to anticipate and control the tempering effect during the temper bead welding, the definition of temperature curve obtained from the analytical solution was suggested in this research. Because the analytical solution for heat flow is expressed as a mathematical equation of weld parameters, it may be effective in anticipating the effect of each weld parameter on the tempering in HAZ during the successive bead depositions. The reheating effect by the successive bead layer on the brittle coarse grained HAZ formed by earlier bead deposition was estimated by comparing the overlapped distance between the temperature curves in the HAZ. Three layered weld specimens of SA508 base metal with A52 filler were prepared by controlling heat input ratio between layers. The tempering effect anticipated by using the overlapped distance between the temperature curves was verified by measuring the micro-hardness distribution in the HAZ of prepared specimens. The temperature curve obtained from analytical solution was expected as a good tool to find optimal temper bead welding conditions.

Solid State Joining of Iron and Steels (철강재료의 고상접합기술)

  • 김영섭;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • 저탄소강은 일반적으로 용접성이 우수하지만 완전한 접합 강도와 용접부에서의 결함을 방지하기 위해서는 많은 주위가 필요하다. 용접부의 기계적 성질은 그 미세구조에 따라 좌우되는데, 이 구조는 모재의 화학조성, 용접 조건 그리고 후열처리에 의하여 결정이 된다. 이와 같이 용융용 접에 의한 저탄소강의 접합부는 저탄소함량으로 응고 균열에 대한 저항이 높다. 그러나 탄소의 함량이 증가하므로서 용접성은 저하하여, 0.3% 이상에서 용접부는 과열, 과냉, 저온 균열과 porosity에 취약하게 된다. 구조용강애 있어서는 용접성에 대한 일반적인 기준이 없으므로 이 러한 재료는 모재와 용접부의 기계적 성질, 고온 및 저온 균열성, 열간 및 냉각가공성등을 고려 하게 된다. 그러나 가장 중요한 것은 용접부의 신뢰도이다. 탄소강과 저합금강에 있어서 용접은 높은 강도를 얻을 수 있어야 하며 접합부에서 모재의 원래의 특성을 유지하여야 하고 결함이 없어야 할 것이다. 이와 같은 결함은 모재의 융접 이하에서 접합을 실시하는 고상접합으로 충 분히 억제할 수가 있다. 고상접합에서는 근본적인 미세조직의 결정화도 피할 수 있으며 고온균 일과 같은 결함의 위험도 배제할 수 있다. 고상접합은 용융용접과는 달리 모재를 용융시키지 않고 고체상태에서 접합을 하는데, 신금속 및 신소재의 개발과 첨단산업의 발달로 고상접합 기 술이 크게 각광을 받고 발전하게 되었다. 이와 같은 접합기술의 발전으로 기존의 용접으로는 접합이 불가한 소재, 용접기술의 적용이 곤란한 복잡한 형상, 복합기능 소재, 고품질 및 고정밀 성이 요구되는 소재등이 접합이 가능하게 되었다. 이러한 접합기술로는 brazing, 확산접합, 마찰 용접 등이 주로 많이 이용되고 있다. Brazing은 융점이 낮은 filler metal이 모재의 사이에서 용 융상태로 유입되어 냉각되면서 접합되는 방식이고 확산접합은 모재의 접합계면에서 원자의 상호 확산으로 접합을 하게 된다. 한편 마찰용접은 계면에서 회전에 의한 마찰열고 접합하는 방식 이다. 본 기술해설에서는 이러한 고상접합 기술을 이용한 철강재료의 접합에 대하여 고찰하도록 하겠다.

  • PDF

A Study on the Characteristics and Utilization of Ash from Sewage Sludge Incinerator (하수(下水)슬러지 소각재의 특성(特性) 평가(評價) 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.3-9
    • /
    • 2008
  • The measurement of physicochemical properties and chemical composition of SSA(sewage sludge ash) has been carried out and the preparation of lightweight material has also been performed using SSA for reuse as building or construction materials. For this aim, lightweight material has been prepared by forming the mixture of SSA, lightweight filler and inorganic binder followed by calcination at elevated temperature and characterized in terms of density and compressive strength. The pH of fly ash was found to be slightly alkaline, pH 8.69, due to the addition of caustic soda in order to neutralize the acidic gas while the pH of bottom ash was 6.48 Heavy metal leachability based on the standard leach test was also found to be below the detection limit for Cd, Cu, Pb, As and Cr of SSA. As far as the compressive strength of lightweight material was concerned, the compressive strength of lightweight material using fly ash was higher than that of lightweight material using bottom ash.

Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630 (관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響))

  • Sae-Kyoo,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

Development of Welding Quality Monitoring Method for TIG Cladding (TIG클래딩 공정에 대한 품질 모니터링기법의 개발)

  • Cho, Sang Myung;Son, Min Su;Park, Jung Hyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.90-95
    • /
    • 2013
  • Pipe inside clad welding is mainly used to the flow pipe of sub-sea or chemical plant. For the inside clad welding to the medium pipe with the diameter of about 12", TIG welding is frequently applied with filler metal. In this case, the clad welding has the very broad weld area over $10m^2$. And, the non-destructive test (NDT) such as ultrasonic test (UT) or radiographic testing (RT) should be conducted on the broad weld area, and it costs very high due to the time-consuming work. Therefore, the present study investigated the variation of arc voltage to develop the in-line quality monitoring system for the pipe inside TIG cladding. The 4 experimental parameters (current, arc length, wire feed position, and shield gas flow rate) varied to observe the change of arc voltage and to establish the model for the monitoring. The arc voltage was decreased when the wire was fed to the backward eccentric position(over 2mm), and the shield gas flow rate was insufficient under 10L/min. In the case of the backward eccentric position over 2mm, the bead appearance was not good and the dilution ratio was increased due to deep penetration. When the shield gas flow rate was lower than 10L/min, the bead surface was oxidized.

Enhancing X-ray radiation protection with novel liquid silicone rubber composites: A promising alternative to lead aprons

  • Wesam Abdullah;Ramzun M. Ramli;Thair Hussein Khazaalah;Nurul Zahirah Noor Azman;Tasnim M. Nawafleh;Farah Salem
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3608-3615
    • /
    • 2024
  • This study introduces a lead-free alternative for enhanced radiation protection. While lead aprons effectively attenuate ionizing radiation, concerns regarding flexibility, weight, and environmental hazards persist. In response, the present research is focused on producing an innovative sheet shielding comprised of carefully selected dense metal oxide microparticles (DMOs-MPs) and liquid silicone rubber (LSR). To evaluate the efficacy of the LSR samples, the current study uses rigorous testing procedures, such as microstructure characterization using EDX and FESEM. Furthermore, the study investigated key attenuation parameters within the LSR samples. Radiation protection was greatly and effectively supplied using DMOs-MPs filler (Bi-1 to Bi-7) in LSR samples; this protection reached 99.9% in the X-ray energy range. Due to the unique characteristics of the Bi-7, the results demonstrated that the samples' shielding efficiency improved with the addition of high atomic number and high-density fillers. It had the greatest attenuation coefficient and density. At 60 keV, Bi-7's density was 2.980 gcm-3, and its LAC and MAC were 19.2621 cm-1 and 6.4638 cm2/g, respectively. It also had the lowest half-value layer values in the energy range of 60-120 keV. The LSR samples showed effective radiation absorption for different energy levels, indicating that LSR can enhance the flexibility and comfort of the apron while providing adequate radiation protection. The incorporation of the DMOs-MPs with LSR represents an effective contribution and a noteworthy stride to enhance the safety and well-being of medical professionals routinely exposed to ionizing radiation.