DOI QR코드

DOI QR Code

Filled Skutterudites: from Single to Multiple Filling

  • Xi, Lili (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Zhang, Wenqing (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Chen, Lidong (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Yang, Jihui (Materials and Processes Laboratory, General Motors R&D)
  • Published : 2010.01.31

Abstract

This paper shortly reviews our recent work on filled skutterudites, which are considered to be one of the most promising thermoelectric (TE) materials due to their excellent power factors and relatively low thermal conductivities. The filled skutterudite system also provides a platform for studying void filling physics/chemistry in compounds with intrinsic lattice voids. By using ab initio calculations and thermodynamic analysis, our group has made progresses in understanding the filling fraction limit (FFL) for single fillers in $CoSb_3$, and ultra-high FFLs in a few alkali-metal-filled $CoSb_3$ have been predicted and then been confirmed experimentally. FFLs in multiple-element-filled $CoSb_3$ are also investigated and anonymous filling behavior is found in a few specific systems. The calculated and measured FFLs, in both single and multiple-filled $CoSb_3$ systems, show good accordance so far. The thermal transport properties can be understood qualitatively by a phonon resonance scattering model, and it seems that a scaling rule may exist between the lattice thermal resistivity and the resonance frequency of filler atoms in filled system. Even though a few things become clear now, there are still many unsolved issues that call for further work.

Keywords

References

  1. G. A. Slack, “New Materials and Performance Limits for Thermoelectric Cooling,” pp. 407-40, chap. 34, in CRC Handbook of Thermoelectrics, Edited by D. M. Rowe, CRC, Boca Raton, 1995.
  2. G. A. Slack and V. G. Tsoukala, “Some Properties of Semiconducting $Irsb_3$,” J. Appl. Phys., 76 [3] 1665-71 (1994). https://doi.org/10.1063/1.357750
  3. G. S. Nolas, J. L. Cohn, and G. A. Slack, “Effect of Partial Void Filling on the Lattice Thermal Conductivity of Skudderudites,” Phys. Rev. B, 58 [1] 164-70 (1998). https://doi.org/10.1103/PhysRevB.58.164
  4. D. T. Morelli, G. P. Meisner, B. X. Chen, S. Q. Hu, and C. Uher, “Cerium Filling and Doping of Cobalt Triantimonide,” Phys. Rev. B, 56 [12] 7376-83 (1997). https://doi.org/10.1103/PhysRevB.56.7376
  5. V. L. Kuznetsov, L. A. Kuznetsova, and D. M. Rowe, “Effect of Partial Void Filling on the Transport Properties of $Nd_xCo_4Sb_{12}$ Skutterudites,” J. Phys: Condens. Matter., 15 [29] 5035-48 (2003). https://doi.org/10.1088/0953-8984/15/29/315
  6. G. A. Lamberton, S. Bhattacharya, R. T. Littleton, M. A. Kaeser, R. H. Tedstrom, T. M. Tritt, J. Yang, and G. S. Nolas, “High Figure of Merit in Eu-filled $CoSb_3$-based Skutterudites,” Appl. Phys. Lett., 80 [4] 598-600 (2002). https://doi.org/10.1063/1.1433911
  7. A. Grytsiv, P. Rogl, S. Berger, C. Paul, E. Bauer, C. Godart, B. Ni, M. M. Abd-Elmeguid, A. Saccone, R. Ferro, and D. Kaczorowski, “Structure and Physical Properties of the Thermoelectric Skutterudites $Eu_yFe_{4-x}Co_xSb_{12}$,” Phys. Rev. B, 66 [9] 094411-22 (2002). https://doi.org/10.1103/PhysRevB.66.094411
  8. Y. Z. Pei, Z. H. Wu, W. Zhang, L. D. Chen, J. Yang, and D. T. Morelli, Magnetic Properties and Specific Heat of $Eu_yCo_4Sb_{12}$ Filled Skutterudites: Stable Divalent State of Europium, to be published.
  9. G. S. Nolas, M. Kaeser, R. T. Littleton, and T. M. Tritt, “High Figure of Merit in Partially Filled Ytterbium Skutterudite Materials,” Appl. Phys. Lett., 77 [12] 1855-57 (2000). https://doi.org/10.1063/1.1311597
  10. X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai, Y. Z. Pei, X. Y. Li, and T. Goto, “Synthesis of $Yb_yCo_4Sb_{12}/Yb_2O_3$ Composites and Their Thermoelectric Properties,” Appl. Phys. Lett., 89 [9] 092121-23 (2006). https://doi.org/10.1063/1.2345249
  11. L. D. Chen, T. Kawahara, X. F. Tang, T. Goto, T. Hirai, J. S. Dyck, W. Chen, and C. Uher, “Anomalous Barium Filling Fraction and n-type Thermoelectric Performance of $Ba_yCo_4Sb_{12}$,” J. Appl. Phys., 90 [4] 1864-68 (2001). https://doi.org/10.1063/1.1388162
  12. X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, W. B. Zhang, and Y. Z. Pei, “Synthesis and Thermoelectric Properties of Sr-filled Skutterudite $Sr_yCo_4Sb_{12}$,” J. Appl. Phys., 99 [5] 053711-14 (2006). https://doi.org/10.1063/1.2172705
  13. M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Muller, “High Temperature Transport Properties of Partially Filled $Ca_xCo_4Sb_{12}$ Skutterudites,” J. Appl. Phys., 95 [9] 4852-55 (2004). https://doi.org/10.1063/1.1688463
  14. M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Muller, and J. Hejtmanek, “Beneficial Effect of Ni Substitution on the Thermoelectric Properties in Partially Filled $Ca_yCo_{4-x}Ni_xSb_{12}$ Skutterudites,” J. Appl. Phys., 97 [8] 083712-16 (2005). https://doi.org/10.1063/1.1868083
  15. T. He, J. Z. Chen, H. D. Rosenfeld, and M. A. Subramanian, “Thermoelectric Properties of Indium-filled Skutterudites,” Chem. Mater., 18 [3] 759-62 (2006). https://doi.org/10.1021/cm052055b
  16. B. C. Sales, B. C. Chakoumakos, and D. Mandrus, “Thermoelectric Properties of Thallium-filled Skutterudites,” Phys. Rev. B, 61 [4] 2475-81 (2000). https://doi.org/10.1103/PhysRevB.61.2475
  17. G. S. Nolas, J. Yang, and H. Takizawa, “Transport Properties of Germanium-filled $CoSb_3$,” Appl. Phys. Lett., 84 [25] 5210-12 (2004). https://doi.org/10.1063/1.1765205
  18. G. S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg, and D. C. Johnson, “Thermoelectric Properties of Sn-filled Skutterudites,” Appl. Phys. Lett., 77 [1] 52-54 (2000). https://doi.org/10.1063/1.126874
  19. Y. Z. Pei, L. D. Chen, W. Zhang, X. Shi, S. Q. Bai, X. Y. Zhao, Z. G. Mei, and X. Y. Li, “Synthesis and Thermoelectric Properties of $K_yCo_4Sb_{12}$,” Appl. Phys. Lett., 89 [22] 221107-09 (2006). https://doi.org/10.1063/1.2397538
  20. Y. Z. Pei, J. Yang, L. D. Chen, W. Zhang, J. R. Salvador, and J. H. Yang, “Improving Thermoelectric Performance of Caged Compounds Through Light-element Filling,” Appl. Phys. Lett., 95 [4] 042101-03 (2009). https://doi.org/10.1063/1.3182800
  21. B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, “Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses,” Phys. Rev. B, 56 [9] 15081-89 (1997). https://doi.org/10.1103/PhysRevB.56.15081
  22. T. M. Tritt, G. S. Nolas, G. A. Slack, A. C. Ehrlich, D. J. Gillespie, and J. L. Cohn, “Low-temperature Transport Properties of the Filled and Unfilled $IrSb_3$ Skutterudite System,” J. Appl. Phys., 79 [11] 8412-18 (1996). https://doi.org/10.1063/1.362515
  23. G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, “Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled end Members,” Phys. Rev. Lett., 80 [16] 3551-54 (1998). https://doi.org/10.1103/PhysRevLett.80.3551
  24. Z. G. Mei, W. Zhang, L. D. Chen, and J. Yang, “Filling Fraction Limits for Rare-earth Atoms in $CoSb_3$: An ab Initio Approach,” Phys. Rev. B, 74 [15] 153202-05 (2006). https://doi.org/10.1103/PhysRevB.74.153202
  25. X. Shi, W. Zhang, L. D. Chen, and J. Yang, “Filling Fraction Limit for Intrinsic Voids in Crystals: Doping in Skutterudites,” Phys Rev Lett, 95 [18] 185503-07 (2005). https://doi.org/10.1103/PhysRevLett.95.185503
  26. W. Zhang, X. Shi, Z. G. Mei, Y. Xu, L. D. Chen, J. Yang, and G. P. Meisner, “Prediction of an Ultrahigh Filling Fraction for K in $CoSb_3$,” Appl. Phys. Lett., 89 [11] 112105-07 (2006). https://doi.org/10.1063/1.2348760
  27. Z. G. Mei, J. Yang, Y. Z. Pei, W. Zhang, and L. D. Chen, “Alkali-metal-filled CoSb3 Skutterudites as Thermoelectric Materials: Theoretical Study,” Phys. Rev. B, 77 [4] 045202-09 (2008). https://doi.org/10.1103/PhysRevB.77.045202
  28. L. Xi, J. Yang, W. Zhang, and L. Chen, “Anomalous Dual-Element Filling in Partially Filled Skutterudites,” J. Am. Chem. Soc., 131 5560-63 (2009). https://doi.org/10.1021/ja8093845
  29. X. F. Tang, H. Li, and Q.J. Zhang, “Synthesis and Thermoelectric Properties of Double-atom-filled Skutterudite Compounds $Ca_mCe_nFe_xCo_{4-x}Sb_{12}$,” J. Appl. Phys., 100 123702-10 [12] (2006). https://doi.org/10.1063/1.2375017
  30. J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, “Dual-frequency Resonant Phonon Scattering in $Ba_xR_yCo_4Sb_{12}$ (R=La, Ce, and Sr),” Appl. Phys. Lett., 90 [19] 192111-13 (2007). https://doi.org/10.1063/1.2737422
  31. X. Shi, H. Kong, C. P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen, and W. Zhang, “Low Thermal Conductivity and High Thermoelectric Figure of Merit in n-type $Ba_xYb_yCo_4Sb_{12}$ Double-filled Skutterudites,” Appl. Phys. Lett., 92 [18] 182101-03 (2008). https://doi.org/10.1063/1.2920210
  32. W. Y. Zhao, P. Wei, Q. J. Zhang, C. L. Dong, L. S. Liu, and X. F. Tang, “Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler,” J. Am. Chem. Soc., 131 [10] 3713-20 (2009). https://doi.org/10.1021/ja8089334
  33. S. Q. Bai, Y. Z. Pei, L. D. Chen, W. Q. Zhang, X. Y. Zhao, and J. Yang, “Enhanced Thermoelectric Performance of Dual-element-filled Skutterudites $Ba_xCe_yCo_4Sb_{12}$,” Acta Mater., 57 [11] 3135-39 (2009). https://doi.org/10.1016/j.actamat.2009.03.018
  34. G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method,” Phys. Rev. B, 59 [3] 1758-75 (1999). https://doi.org/10.1103/PhysRevB.59.1758
  35. P. E. Blochl, “Projector Augmented-wave Method,” Phys. Rev. B, 50 [24] 17953-79 (1994) https://doi.org/10.1103/PhysRevB.50.17953
  36. G. Kresse and J. Furthmuller, “Efficient Iterative Schemes for ab initio Total-energy Calculations Using a Plane-wave Basis Set,” Phys. Rev. B, 54 [16] 11169-86 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  37. G. Kresse and J. Hafner, “Abinitio Molecular-Dynamics for Liquid-Metals,” Phys. Rev. B, 47 [1] 558-61 (1993). https://doi.org/10.1103/PhysRevB.47.558
  38. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation made Simple,” Phys. Rev. Lett., 77 [18] 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  39. H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Phys. Rev. B, 13 [12] 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  40. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature, 395 [6705] 876-78 (1998). https://doi.org/10.1038/27625
  41. G. J. Long, R. P. Hermann, F. Grandjean, E. E. Alp, W. Sturhahn, C. E. Johnson, D. E. Brown, O. Leupold, and R. Ruffer, “Strongly Decoupled Europium and Iron Vibrational Modes in Filled Skutterudites,” Phys. Rev. B, 71 [14] 140302-05 (2005). https://doi.org/10.1103/PhysRevB.71.140302
  42. J. Yang, G. P. Meisner, C. J. Rawn, H. Wang, B. C. Chakoumakos, J. Martin, G. S. Nolas, B. L. Pedersen, and J. K. Stalick, “Low temperature Transport and Structural Properties of Misch-metal-filled Skutterudites,” J. Appl. Phys., 102 [8] 083702-08 (2007). https://doi.org/10.1063/1.2794716
  43. J. L. Feldman, P. C. Dai, T. Enck, B. C. Sales, D. Mandrus, and D. J. Singh, “Lattice Vibrations in $La(Ce)Fe_4Sb_{12}$ and $CoSb_3$: Inelastic Neutron Scattering and Theory,” Phys. Rev. B., 73 [1] 014306-16 (2006). https://doi.org/10.1103/PhysRevB.73.014306
  44. X. Shi, Jihui Yang, M. Chi, H. Wang, J. R. Salvador, Jiong Yang, S. Bai, W. Zhang, L. Chen, J. Copley, J. B. Leao, J. and J. Rush, “Realization of High Thermoelectric Efficiency in Caged Compounds Using Multiple Incoherent Rattlers,” to be published.

Cited by

  1. High pressure synthesis and thermoelectric properties of Ba-filled CoSb3 skutterudites vol.28, pp.12, 2017, https://doi.org/10.1007/s10854-017-6603-5