DOI QR코드

DOI QR Code

Research Trends in Thermally Conductive Composites Filled with Carbon Materials

탄소재료가 내첨된 열전도성 복합재의 연구 동향

  • An, Donghae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Ji-Wook (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 안동해 (충남대학교 응용화학공학과) ;
  • 김경훈 (충남대학교 응용화학공학과) ;
  • 김지욱 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2019.11.23
  • Accepted : 2020.01.08
  • Published : 2020.02.10

Abstract

As electronic devices become more advanced and smaller, one of the biggest problems to solve is the heat affecting the efficiency and lifetime of instruments. High thermal conductivity materials, in particular, metal or ceramic ones, have been used to reduce the heat generated from devices. However, due to their low mechanical properties and high weight, thermally conductive composites composed with polymers having a light-weight and good mechanical properties as a matrix and carbon materials having high thermal conductivity as a thermally conductive filler have been attracting great attention. To improve the thermal conductivity of the composites, a phonon scattering must be suppressed to move phonon effectively. In this review, we classified researches related to phonon migration and scattering inhibition of carbon/polymer composites, and discussed various methods to improve thermal conductivity.

전자기기의 고도화 및 소형화에 따라, 기기의 효율 및 수명에 영향을 미치는 발열 문제를 해결하는 것은 가장 큰 해결 난제 중 하나가 되었다. 이를 해결하기 위하여 금속 및 세라믹 기반의 높은 열전도도를 가지는 재료가 많이 사용되어 왔으나, 낮은 기계적 물성 및 높은 중량으로 인해 가벼우면서도 기계적 특성이 좋은 고분자를 기지재로 사용하고 높은 열전도도를 갖는 탄소재료를 필러로 사용한 열전도성 복합재가 주목받고 있다. 열전도성 복합재의 열전도도를 향상시키기 위해서는 효과적인 포논의 이동이 이루어지도록 포논 산란이 억제되야한다. 본 논문에서는 탄소재료/고분자 복합재의 포논 이동 및 산란 억제에 관련된 연구를 분류하고, 열전도도 향상을 위하여 적용된 다양한 방법들에 대하여 논의하였다.

Keywords

References

  1. B. Zalba, J. M. Marin, L. F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications, Appl. Therm. Eng., 23, 251-283 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8
  2. A. T. Miranda, L. Bolzoni, N. Barekar, Y. Huang, J. Shin, S.-H. Ko, and B. J. McKay, Processing, structure and thermal conductivity correlation in carbon fibre reinforced aluminium metal matrix composites, Mater. Des., 156, 329-339 (2018). https://doi.org/10.1016/j.matdes.2018.06.059
  3. D. H. Sung, M. Kim, and Y.-B. Park, Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites, Compos. B. Eng., 133, 232-239 (2018). https://doi.org/10.1016/j.compositesb.2017.09.032
  4. J.-H. Kim and Y.-S. Lee, The effects of carbon coating onto graphite filler on the structure and properties of carbon foams, Carbon Lett., 21, 111-115 (2017). https://doi.org/10.5714/CL.2017.21.111
  5. K. M. Lee, M.-J. Kim, H. Jo, S. Y. Yeo, and Y.-S. Lee, The electrical and heating properties of copper-incorporated graphite fibers fabricated using different ultrasonication techniques, Carbon Lett., 24, 111-114 (2017). https://doi.org/10.5714/CL.2017.24.111
  6. M.-S. Park, S. Lee, and Y.-S. Lee, Mechanical properties of epoxy composites reinforced with ammonia-treated graphene oxides, Carbon Lett., 21, 1-7 (2017). https://doi.org/10.5714/CL.2017.21.001
  7. A. Aliyu, A. Abdulkareem, A. Kovo, O. Abubakre, J. Tijani, and I. Kariim, Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin, Carbon Lett., 21, 33-50 (2017). https://doi.org/10.5714/CL.2017.21.033
  8. M. Sajid, I. Hassan, and A. Rahman, An overview of cooling of thermoelectric devices, Renew. Sust. Energ. Rev., 78, 15-22 (2017). https://doi.org/10.1016/j.rser.2017.04.098
  9. W.-K. Choi, B.-J. Kim, and S.-J. Park, Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers, Carbon Lett., 14, 243-246 (2013). https://doi.org/10.5714/CL.2013.14.4.243
  10. A. E. Fetohi, R. A. Hameed, and K. El-Khatib, Development of electroless Ni-P modified aluminum substrates in a simulated fuel cell environment, J. Ind. Eng. Chem., 30, 239-248 (2015). https://doi.org/10.1016/j.jiec.2015.05.028
  11. F. Tian, H. Li, N. Zhao, and C. He, Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition, Mater. Chem. Phys., 115, 493-495 (2009). https://doi.org/10.1016/j.matchemphys.2009.01.007
  12. G.-M. Yoo, S.-G. Lee, and S.-R. Kim, Effect of multi-wall carbon nanotube surface treatment on the interface and thermal conductivity of carbon nanotube-based composites, Adhesion and Interface, 11, 174-180 (2010).
  13. Y.-P. Sun, K. Fu, Y. Lin, and W. Huang, Functionalized carbon nanotubes: Properties and applications, Acc. Chem. Res., 35, 1096-1104 (2002). https://doi.org/10.1021/ar010160v
  14. J. S. Im, J. G. Kim, S.-H. Lee, and Y.-S. Lee, Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference, Colloids Surf. A, 364, 151-157 (2010). https://doi.org/10.1016/j.colsurfa.2010.05.015
  15. K. Ji, H. Zhao, J. Zhang, J. Chen, and Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs, Appl. Surf. Sci., 311, 351-356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
  16. H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, and Q. Fu, Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials, Prog. Polym. Sci., 39, 627-655 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.007
  17. H. J. Kim, H. Kim, Y. Kim, W. S. Lee, D. H. Yoon, and W. S. Yang, The study of thermal properties of graphene/Cu foam hybrid structures, J. Korean Cryst. Growth Cryst. Technol., 23, 235-240 (2013). https://doi.org/10.6111/JKCGCT.2013.23.5.235
  18. J. Liang, M. C. Saha, and M. C. Altan, Effect of carbon nanofibers on thermal conductivity of carbon fiber reinforced composites, Procedia Eng., 56, 814-820 (2013). https://doi.org/10.1016/j.proeng.2013.03.201
  19. Y. A. Kim, S. Kamio, T. Tajiri, T. Hayashi, S. M. Song, M. Endo, M. Terrones, and M. S. Dresselhaus, Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes, Appl. Phys. Lett., 90, 093125 (2007). https://doi.org/10.1063/1.2710778
  20. S. T. Viana, V. K. Scariot, A. Provensi, G. M. O. Barra, and J. R. Barbosa, Fabrication and thermal analysis of epoxy resin-carbon fiber fabric composite plate-coil heat exchangers, Appl. Therm. Eng., 127, 1451-1460 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.124
  21. T. Nomura, K. Tabuchi, C. Zhu, N. Sheng, S. Wang, and T. Akiyama, High thermal conductivity phase change composite with percolating carbon fiber network, Appl. Energy, 154, 678-685 (2015). https://doi.org/10.1016/j.apenergy.2015.05.042
  22. C. Ji, C. Yan, Y. Wang, S. Xiong, F. Zhou, Y. Li, R. Sun, and C.-P. Wong, Thermal conductivity enhancement of CNT/$MoS_2$/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network, Compos. B. Eng., 163, 363-370 (2019). https://doi.org/10.1016/j.compositesb.2018.11.005
  23. Y. Li, X. Tian, W. Yang, Q. Li, L. Hou, Z. Zhu, Y. Tang, M. Wang, B. Zhang, T. Pan, and Y. Li, Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength, Chem. Eng. J., 358, 718-724 (2019). https://doi.org/10.1016/j.cej.2018.10.004
  24. B. Tang, G. Hu, H. Gao, and L. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials, Int. J. Heat Mass Transfer, 85, 420-429 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.141
  25. X. Shen, Z. Wang, Y. Wu, X. Liu, and J.-K. Kim, Effect of functionalization on thermal conductivities of graphene/epoxy composites, Carbon, 108, 412-422 (2016). https://doi.org/10.1016/j.carbon.2016.07.042
  26. H. Im and J. Kim, Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite, Carbon, 50, 5429-5440 (2012). https://doi.org/10.1016/j.carbon.2012.07.029
  27. Y.-X. Fu, Z.-X. He, D.-C. Mo, and S.-S. Lu, Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives, Int. J. Therm. Sci., 86, 276-283 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.07.011
  28. L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J. W. Connell, and Y.-P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity, Adv. Mater., 21, 2088-2092 (2009). https://doi.org/10.1002/adma.200802317
  29. N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology, 22, 105705 (2011). https://doi.org/10.1088/0957-4484/22/10/105705
  30. M. Shamsa, W. L. Liu, A. A. Balandin, C. Casiraghi, W. I. Milne, and A. C. Ferrari, Thermal conductivity of diamond-like carbon films, Appl. Phys. Lett., 89, 161921 (2006). https://doi.org/10.1063/1.2362601
  31. H. Li, S. Dai, J. Miao, X. Wu, N. Chandrasekharan, H. Qiu, and J. Yang, Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel "molecular welding" strategy, Carbon, 126, 319-327 (2018). https://doi.org/10.1016/j.carbon.2017.10.044
  32. J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, High-thermal-conductivity, mesophase-pitch-derived carbon foams: Effect of precursor on structure and properties, Carbon, 38, 953-973 (2000). https://doi.org/10.1016/S0008-6223(99)00190-6
  33. S.-S. Park, S.-P. Han, Y.-H. Jeon, J.-Y. Kim, and N.-J. Kim, A comparative study on the characteristics of nanofluids to the shape of graphene and carbon nanotube, J. Korean Solar Energy Soc., 33, 99-106 (2013). https://doi.org/10.7836/kses.2013.33.3.099
  34. N. Joseph, C. Janardhanan, and M. T. Sebastian, Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites, Compos. Sci. Tech., 101, 139-144 (2014). https://doi.org/10.1016/j.compscitech.2014.07.002
  35. G.-H. Kang, K. Seong, M. Kim, I. G. Kim, I. C. Bang, H. W. Park, and Y.-B. Park, Thermoelectric composites based on carbon nanotubes and micro glass bubbles, Compos. Res., 28, 70-74 (2015). https://doi.org/10.7234/composres.2015.28.2.070
  36. J. Kim, H. Im, and J. Kim, The effect of surface modification on the disperisibilities and the thermal conductivities of single-walled carbon nanotube (SWCNT)/epoxy composites, Appl. Chem. Eng., 22, 266-271 (2011).
  37. J. H. Lin, Z. I. Lin, Y. J. Pan, C. K. Chen, C. L. Huang, C. H. Huang, and C. W. Lou, Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: Synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes, Macromol. Mater. Eng., 301, 199-211 (2016). https://doi.org/10.1002/mame.201500314
  38. D. Xing, L. Lu, W. Tang, Y. Xie, and Y. Tang, An ultra-thin multilayer carbon fiber reinforced composite for absorption-dominated EMI shielding application, Mater. Lett., 207, 165-168 (2017). https://doi.org/10.1016/j.matlet.2017.07.070
  39. Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding, Adv. Mater., 25, 1296-1300 (2013). https://doi.org/10.1002/adma.201204196
  40. S. Kuester, G. M. Barra, J. C. Ferreira Jr, B. G. Soares, and N. R. Demarquette, Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ran-butylene-b-styrene) and carbon nanotubes, Eur. Polym. J., 77, 43-53 (2016). https://doi.org/10.1016/j.eurpolymj.2016.02.020
  41. J. Fukai, M. Kanou, Y. Kodama, and O. Miyatake, Thermal conductivity enhancement of energy storage media using carbon fibers, Energy Convers. Manage., 41, 1543-1556 (2000). https://doi.org/10.1016/S0196-8904(99)00166-1
  42. J. Liu, W. Qu, Y. Xie, B. Zhu, T. Wang, X. Bai, and X. Wang, Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers, Carbon, 121, 35-47 (2017). https://doi.org/10.1016/j.carbon.2017.05.066
  43. C.-W. Nan, G. Liu, Y. Lin, and M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85, 3549-3551 (2004). https://doi.org/10.1063/1.1808874
  44. T. S. Gspann, S. M. Juckes, J. F. Niven, M. B. Johnson, J. A. Elliott, M. A. White, and A. H. Windle, High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology, Carbon, 114, 160-168 (2017). https://doi.org/10.1016/j.carbon.2016.12.006
  45. D. Hu, W. Gong, J. Di, D. Li, R. Li, W. Lu, B. Gu, B. Sun, and Q. Li, Strong graphene-interlayered carbon nanotube films with high thermal conductivity, Carbon, 118, 659-665 (2017). https://doi.org/10.1016/j.carbon.2017.04.005
  46. S. Zhang, L. Gao, J. Han, Z. Li, G. Zu, X. Ran, and Y. Sun, Through-thickness thermal conductivity enhancement and tensile response of carbon fiber-reinforced polymer composites, Compos. B. Eng., 165, 183-192 (2019). https://doi.org/10.1016/j.compositesb.2018.11.114
  47. L. Qiu, H. Zou, N. Zhu, Y. Feng, X. Zhang, and X. Zhang, Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers, Appl. Therm. Eng., 141, 913-920 (2018). https://doi.org/10.1016/j.applthermaleng.2018.06.049
  48. B. Fan, Y. Liu, D. He, and J. Bai, Enhanced thermal conductivity for mesophase pitch-based carbon fiber/modified boron nitride/epoxy composites, Polymer, 122, 71-76 (2017). https://doi.org/10.1016/j.polymer.2017.06.060
  49. S. Ganguli, A. K. Roy, and D. P. Anderson, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites, Carbon, 46, 806-817 (2008). https://doi.org/10.1016/j.carbon.2008.02.008
  50. Z. Wang, R. Qi, J. Wang, and S. Qi, Thermal conductivity improvement of epoxy composite filled with expanded graphite, Ceram. Int., 41, 13541-13546 (2015). https://doi.org/10.1016/j.ceramint.2015.07.148
  51. M. H. Tsai, I. H. Tseng, J. C. Chiang, and J. J. Li, Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability, ACS Appl. Mater. Interfaces, 6, 8639-8645 (2014). https://doi.org/10.1021/am501323m
  52. S. Y. Mun, H. M. Lim, and D.-J. Lee, Thermal conductivity of a silicon carbide/pitch-based carbon fiber-epoxy composite, Thermochim. Acta, 619, 16-19 (2015). https://doi.org/10.1016/j.tca.2015.09.020
  53. W. Fan, J.-l. Li, Y.-y. Zheng, T.-j. Liu, X. Tian, and R.-j. Sun, Influence of thermo-oxidative aging on the thermal conductivity of carbon fiber fabric reinforced epoxy composites, Polym. Degrad. Stab., 123, 162-169 (2016). https://doi.org/10.1016/j.polymdegradstab.2015.11.016
  54. S.-Y. Yang, C.-C.M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, and K.-C. Chiou, Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, Carbon, 48, 592-603 (2010). https://doi.org/10.1016/j.carbon.2009.08.047
  55. A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle, Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, Compos. Sci. Technol., 66, 1285-1288 (2006). https://doi.org/10.1016/j.compscitech.2005.10.016
  56. W. Yu, L. Wang, Y. Qi, L. Chen, L. Wang, and H. Xie, The influence of nitrogen doping on thermal conductivity of carbon nanotubes, Thermochim. Acta, 617, 163-168 (2015). https://doi.org/10.1016/j.tca.2015.08.034
  57. L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, Y. Han, J. Gu, J. Kong, D. Pan, and Z. Guo, Electromagnetic interference shielding MWCNT-$Fe3O_4$@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability, Carbon, 141, 506-514 (2019). https://doi.org/10.1016/j.carbon.2018.10.003
  58. W. Yuan, Q. Xiao, L. Li, and T. Xu, Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles, Appl. Therm. Eng., 106, 1067-1074 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.089
  59. H. Wang, S. Wang, W. Lu, M. Li, Y. Gu, Y. Zhang, and Z. Zhang, Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification, Appl. Surf. Sci., 442, 170-177 (2018). https://doi.org/10.1016/j.apsusc.2018.02.125

Cited by

  1. Effect of kneading and carbonization temperature on the structure of the carbon block for thermally conductive bulk graphites vol.31, pp.6, 2020, https://doi.org/10.1007/s42823-021-00288-5